Preview

Proceedings of Telecommunication Universities

Advanced search

Multi-Level Peer-to-Peer Requests Processing in Mobile Networks

https://doi.org/10.31854/1813-324X-2020-6-2-79-86

Abstract

The evolution of the Internet of Things application dictates new, more stringent requirements for the speed of transmission and processing of information. To reduce latency, peripheral multi-service access computing is gaining in popularity. This approach allows users to process data closer to their location. However, such solutions may not take into account the specifics of applications based on peer-to-peer user requests (P2P). Subject of study. The article explores the processing time of P2P requests in mobile networks. Method. The applied methodology includes methods of mathematical and simulation modeling. The main results. The results of the work allow us to conclude that the peripheral computing of multiservice access in their standard architectural design is insufficient. At the same time, the developed solution based on a multilevel architecture with multicast routing provides significantly lower query processing time. Practical significance. The solution proposed by the authors is able to ensure the operability of applications requiring minimal network latency, such as medical applications, unmanned vehicles, search for various service providers with reference to geographical coordinates.

Keywords


About the Authors

R. .. Pirmagomedov
Tampere University; The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Russian Federation


A. A. Ahmed
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Russian Federation


References

1. Zhang Z., Xiao Y., Ma Z., Xiao M., Ding Z., et al. 6G Wireless Networks: Vision, requirements, architecture, and Key Technologies // IEEE Vehicular Technology Magazine. 2019. Vol. 14. Iss. 3. PP. 28-41. DOI:10.1109/MVT.2019.2921208

2. Pirmagomedov R., Hudoev I., Shangina D. Simulation of Medical Sensor Nanonetwork Applications Traffic // Proceedings of the 19th International Conference on Distributed Computer and Communication Networks (DCCN 2016, Moscow, Russia, 21-25 November 2016). Communications in Computer and Information Science (CCIS). Vol. 678. Cham: Springer, 2016. PP. 430-441. DOI:10.1007/978-3-319-51917-3_38

3. Yousefpour A., Fung C., Nguyen T., Kadiyala K., Fatemeh J., et al. All one needs to know about fog computing and related edge computing paradigms: A complete survey // Journal of Systems Architecture. 2019. Vol. 98. PP. 289-330. DOI:10.1016/ j.sysarc.2019.02.009

4. Hu Y.C., Patel M., Sabella D., Sprecher N., Young V. Mobile Edge Computing: A key technology towards 5G // ETSI White Paper. 2015. No. 11. 16 p.

5. Ren J., Yu G., He Y., Li G.Y. Collaborative Cloud and Edge Computing for Latency Minimization // IEEE Transactions on Vehicular Technology. 2019. Vol. 68. Iss. 5. PP. 5031-5044. DOI:10.1109/TVT.2019.2904244

6. Pirmagomedov R., Blinnikov M., Glushakov R., Muthanna A., Kirichek R., et al. Dynamic data packaging protocol for Real- Time Medical Applications of Nanonetworks // Proc. of the 17th Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2017), 10th Conference on Internet of Things and Smart Spaces (ruSMART 2017), Third International Workshop on Nano-scale Computing and Communications (NsCC 2017), St. Petersburg, Russia, 28-30 August 2017. Lecture Notes in Computer Science (LNCS). Vol. 10531. Springer: Cham, 2017. PP. 196-205. DOI:10.1007/978-3-319-67380-6_18

7. Mach P., Becvar Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading // IEEE Communications Surveys & Tutorials. 2017. Vol. 19. Iss. 3. PP. 1628-1656. DOI:10.1109/COMST.2017.2682318

8. Поселенцева Д. Ю., Замятина Е. Б. Опыт исследования алгоритмов маршрутизации и передачи данных в ad-hoc-сетях // Вестник пермского университета. Серия: Математика. Механика. Информатика. 2019. № 4(47). С. 76-85. DOI:10.17072/1993-0550-2018-4-76-85

9. Lin X., Ganti R.K., Fleming P.J., Andrews J.G. Fundamentals of mobility in cellular networks: Modeling and analysis // Proceedings of IEEE Global Communications Conference (GLOBECOM, Anaheim, USA, 3-7 December 2012). IEEE, 2012. PP. 5433-5438. DOI:10.1109/GLOCOM.2012.6503985

10. Hyytia E., Lassila P., Virtamo J. A Markovian Waypoint Mobility Model with Application to Hotspot Modeling // Proceedings of IEEE International Conference on Communications (Istanbul, Turkey, 11-15 June 2006). IEEE, 2006. Vol. 3. PP. 979-986. DOI:10.1109/ICC.2006.254875

11. Hyytiä E., Virtamo J. Random waypoint mobility model in cellular networks // Wireless Networks. 2007. Vol. 13. Iss. 2. PP. 177-188. DOI:10.1007/s11276-006-4600-3

12. Crescenzi P., Di Ianni M., Marino A., Rossi G., Vocca P. Spatial Node Distribution of Manhattan Path Based Random Waypoint Mobility Models with Applications // Proceedings of the 16th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2009, Piran, Slovenia, 25-27 May 2009). Lecture Notes in Computer Science (LNCS). Vol. 5869. Berlin, Heidelberg: Springer, 2009. PP. 154-166. DOI:10.1007/978-3-642-11476-2_13

13. Tyagi R.R., Aurzada F., Lee Ki-Dong, Reisslein M. Connection establishment in LTE-A Networks: Justification of Poisson Process Modeling // IEEE Systems Journal. 2015. Vol. 11. Iss. 4. PP. 2383-2394. DOI:10.1109/JSYST.2014.2387371

14. Chlebus E., Brazier J. Nonstationary Poisson modeling of web browsing session arrivals // Information Processing Letters. 2007. Vol. 102. Iss. 5. PP. 187-190. DOI:10.1016/j.ipl.2006.12.015

15. Cooper R.B. Introduction to queueing theory. New York: North Holland, 1981.

16. Ateya A.A., Vybornova A., Kirichek R., Koucheryavy A. Multilevel cloud based Tactile Internet system // Proceedings of the 19th International Conference on Advanced Communication Technology (ICACT, Bongpyeong, South Korea, 19-22 February 2017). IEEE, 2017. PP. 105-110. DOI:10.23919/ICACT.2017.7890067

17. Атея А.А., Выборнова А.И., Кучерявый А.Е. Многоуровневая облачная архитектура для услуг тактильного интернета // Электросвязь. 2017. № 2. С. 26-30.

18. Ateya A.A., Sayed M.S., Abdalla M.I. Multilevel Hierarchical Clustering protocol for wireless sensor networks // Proceedings of International Conference on Engineering and Technology (ICET, Cairo, Egypt, 19-20 April 2014). IEEE, 2014. DOI:10.1109/ICEngTechnol.2014.7016756


Review

For citations:


Pirmagomedov R..., Ahmed A.A. Multi-Level Peer-to-Peer Requests Processing in Mobile Networks. Proceedings of Telecommunication Universities. 2020;6(2):79-86. (In Russ.) https://doi.org/10.31854/1813-324X-2020-6-2-79-86

Views: 2288


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)