Preview

Proceedings of Telecommunication Universities

Advanced search

Multicast Fiber Bragg Structures in Microwave Photonics Sensor Systems

https://doi.org/10.31854/1813-324X-2020-6-1-6-13

Abstract

The article describes the transition concept from addressable fiber Bragg structures and microwave-photonics sensor systems based on them to multicast fiber Bragg structures. The difference between multicast structures and address structures is that in the fiber Bragg structure formes three or more super narrow-band frequency components, spaced from each other by the microwave frequency. The central frequencies shift of multicast Bragg structures is determined by the result of processing the signal of optical frequencies beats at the photodetector, which parameters judge the applied physical fields. We see the solved problem of uniquely determining the central (Bragg) frequency shift of the multicast fiber Bragg structure, with a unique set of address frequencies.

About the Authors

T. .. Agliullin
Kazan National Research Technical University named after A.N. Tupolev
Russian Federation


V. .. Anfinogentov
Kazan National Research Technical University named after A.N. Tupolev
Russian Federation


R. .. Misbahov
Kazan State Power Engineering University
Russian Federation


O. .. Morozov
Kazan National Research Technical University named after A.N. Tupolev
Russian Federation


A. .. Sakhabutdinov
Kazan National Research Technical University named after A.N. Tupolev
Russian Federation


References

1. Measures R.M., Melle S., Liu K. Wavelength demodulated Bragg grating fiber optic sensing systems for addressing smart structure critical issues // Smart Materials and Structures. 1992. Vol. 1. Iss. 1. PP. 36-44. DOI:10.1088/0964-1726/1/1/006

2. Davis M.A., Bellemore D.G., Kersey A.D. Structural strain mapping using a wavelength/time division addressed fiber Bragg grating array // Proceedings of the II European Conference on Smart Structures and Materials (Glasgow, United Kingdom, 12-14 October 1994). 1994. Vol. 2361. PP. 342-345. DOI:10.1117/12.184861

3. Matveenko V.P., Shardakov I.N., Voronkov A.A., Kosheleva N.A., Lobanov, D.S., Serovaev G.S., et al. Measurement of strains by optical fiber Bragg grating sensors embedded into polymer composite material // Structural Control Health Monitoring. 2017. Vol. 25. Iss. 3. PP. 1-11. DOI:10.1002/stc.2118

4. Qiao X., Shao Z., Bao W., Rong Q. Fiber Bragg Grating Sensors for the Oil Industry // Sensors. 2017. Vol. 17. Iss. 3. DOI:10.3390/s17030429

5. Ma Z., Chen X. Fiber Bragg Gratings Sensors for Aircraft Wing Shape Measurement: Recent Applications and Technical Analysis // Sensors. 2019. Vol. 19. Iss. 1. DOI:10.3390/s19010055

6. Karim F. Full Matlab Code for Synthesis and Optimization of Bragg Gratings. Newcastle upon Tyne: Cambridge Scholars Publishing, 2019. 24 p

7. Cormier G., Boudreau R., Thériault S. Real-coded genetic algorithm for Bragg grating parameter synthesis // JOSA B. 2001. Vol. 18. Iss. 12. PP. 1771-1776. DOI:10.1364/JOSAB.18.001771

8. Li K. Review of the Strain Modulation Methods Used in Fiber Bragg Grating Sensors // Journal of Sensors. 2016. Vol. 9. Iss. 4. DOI:10.1155/2016/1284520

9. Koo K.P., LeBlanc M., Tsai T.E., Vohra S.T. Fiber-chirped grating Fabry-Perot sensor with multiple-wavelength-addres-sable free-spectral ranges // IEEE Photonics Technology Letters. 1998. Vol. 10. Iss. 7. PP. 1006-1008. DOI:10.1109/68.681299

10. Wei Z., Ghafouri-Shiraz H., Shalaby H.M.H. New code families for fiber-Bragg-grating-based spectral-amplitude-coding optical CDMA systems // IEEE Photonics Technology Letters. 2001. Vol. 13. Iss. 8. PP. 890-892. DOI:10.1109/68.935838

11. Kataoka N. Phase-shifted superstructured fiber Bragg grating // Fujikura Technical Review. 2011. No. 40. PP. 6-11

12. Triana C.A., Pastor D., Varón M. Optical code division multiplexing in the design of encoded fiber Bragg grating sensors // Óptica Pura y Aplicada. 2016. Vol. 49. No. 1. PP. 17-28. DOI:10.7149/OPA.49.1.17

13. Triana A., Pastor D. Interrogation of super-structured FBG sensors based on discrete prolate spheroidal sequences // Proceedings of SPIE (Prague, Czech Republic, 24-27 April 2017). 2017. Vol. 10231. DOI:10.1117/12.2267238

14. Djordjevic I.B., Saleh A.H., Küppers F. Design of DPSS based fiber bragg gratings and their application in all-optical encryption, OCDMA, optical steganography, and orthogonal-division multiplexing // Optics Express. 2014. Vol. 22. Iss. 9. PP. 10882-10897. DOI:10.1364/OE.22.010882

15. Kim Y., Jeon S.-W., Kwon W.-B., Park C.-S. A Wide Dynamics and Fast Scan Interrogating Method for a Fiber Bragg Grating Sensor Network Implemented Using Code Division Multiple Access // Sensors. 2012. Vol. 12. Iss. 5. PP. 5888-5895. DOI:10.3390/s120505888

16. Triana A., Pastor D., Varón M. A Code Division Design Strategy for Multiplexing Fiber Bragg Grating Sensing Networks // Sensors. 2017. Vol. 17. Iss. 11. DOI:10.3390/s17112508

17. Сахабутдинов А.Ж. Радиофотонные сенсорные системы на адресных волоконных брэгговских структурах и их применение для решения практических задач. Дис. ... докт. техн. наук. Казань: Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ, 2018

18. Морозов О.Г., Сахабутдинов А.Ж. Адресные волоконные брэгговские структуры в квазираспределённых радиофотонных сенсорных системах // Компьютерная оптика. 2019. Т. 43. № 4. С. 535-543. DOI:10.18287/2412-6179-2019-43-4-535-543

19. Новикова В.А., Коннов К.А., Грибаев А.И., Варжель С.В. Способ формирования волоконной брэгговской решётки с фазовым сдвигом. Патент на изобретение RUS 2676191 от 24.01.2018. Опубл. 26.12.2018. Бюл. № 36. 12 c


Review

For citations:


Agliullin T..., Anfinogentov V..., Misbahov R..., Morozov O..., Sakhabutdinov A... Multicast Fiber Bragg Structures in Microwave Photonics Sensor Systems. Proceedings of Telecommunication Universities. 2020;6(1):6-13. (In Russ.) https://doi.org/10.31854/1813-324X-2020-6-1-6-13

Views: 1946


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-324X (Print)
ISSN 2712-8830 (Online)