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Abstract: This paper presents a developed system for testing the accessibility of the virtual machine deployment
service in the cloud. The methods used for monitoring cloud systems based on open-source solutions such as
Kubernetes, Prometheus, and Selenium are discussed. The key stages of the system design are described, including
requirements gathering and analysis, architecture, and implementation features. This system allows for the
prevention of potential issues before they arise, as well as increasing IT service reliability. Integration with open -
source systems helps to reduce the cost of system development and operation and speeds up implementation time.
Additionally, this system can be quickly adapted and customized to meet specific needs. To analyze the feasibility of
building the system, production statistics of virtual machine reservations were collected using the Prometheus
monitoring system.
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AHHOTauMA: B daHHoll cmambe npedcmas/eHa pa3pabomaHHas cucmema mecmuposarus docmynHocmu cepau-
ca pazeepmul8aHuUsl BUPMYANbHLIX MAWUH 8 0b.1ake. PaccmompeHrbl Memodbl, Ucno1b3yemsle 019 MOHUMOPUH2A
06/1a4HbIX cuCmeM Ha OCHOBe peuwleHUll C OMKpbIMbIM UCX0OHbIM Kodom (om aHea. Opensource), makue Kak
Kubernetes, Prometheus u Selenium. OnucaHbl KAK4egble 3mansl NPOEKMUPOBAHUSL CUCMeMbl, A UMEHHO c60p U
aHa/aus mpebosaHuli, apxumekmypa, a makijce 0co6eHHocmu peaauzayuu. /JaHHas cucmema nosgoisiem npedy-
npedums 803MOJCHble NPob.1eMbl 00 UX BO3HUKHOBEHUS, d MaKice nosblcums HadexcHocmb cepauca. Mnmezpayus
€ cucmemamu Ha OCHOB8e OMKPbIMbIX UCXOOHbIX KOO08 N0380./151em YMEeHbWUMb CMoUMOCMb paspabomku U 3Kc-
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njayamayuu cucmembvl, d makie yCKOpumMs Cpoku 8HedpeHust. [JaHHas cucmema makyce Moxcem 6bimb 6bICMPO
adanmupoeaHa u HaCMpoeHda ¢ yyemom KOHKpemHbix nompe6Hocmetl. [lis aHaau3a yeaecoobpasHocmu nocmpo-
eHuUsl cucmeMbl 6bL1a COOPAHA NPOU3BOACMBEHHAS] CMAMUCMUKA pe3epaupos8aHuli 8UpmyasbHblX MAWUH C NOMO-

Wb cucmemsl MOHUMOpUHZa Prometheus.

KioueBble cji0Ba: uHopMmayuoHHble MexXHO102Ul, MOHUMOPUHZ, 06pabomka uHgopMayuu, MempuxKu MOHUMOPUH-
2a, 06/1a4Hble MexXHO102Ul, mecmuposaHue npuaodiceHull, Prometheus, Selenium, Kubernetes, Cronjobs, Python
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Introduction

Cloud providers offer various types of services, such
as hosting virtual machines, data storage, databases,
analytics, and more. Typically, access to these services
is provided both through a web interface and an API
(Application Programming Interface) - a set of inter-
faces for software integration with services via various
protocols. Monitoring the availability and performance
of cloud systems and services is one of the most im-
portant aspects of ensuring their stable operation, as
well as identifying and fixing issues that arise during
operation. Specialized software is used to monitor the
availability of cloud services. One popular open-source
solution is the Prometheus monitoring service [1].
This monitoring system allows you to collect and store
performance and availability data in the form of time
series - sequences of values that change over time.
The collected data can be analyzed using various
methods, such as visualization, statistical analysis, and
machine learning.

In this study, a new method for testing and monitor-
ing a cloud service was proposed. This service allows
users to rent virtual machines in the cloud and choose
one of the offered types of virtual machines with a
specified amount of RAM, processors, and storage.
This type of service is very popular for both enterpris-
es and individual users and allows significant re-
sources to be saved by providing compute resources
on demand.

The object of scientific research

The object of the research is the internal cloud plat-
form of the Intel company [2], which allows develop-
ers and researchers to use computing resources to test

and optimize their applications and algorithms. The
platform also provides extensive capabilities for man-
aging infrastructure for computing and efficient re-
source management and is used for various tasks, such
as processing big data and machine learning. Intel is
one of the world's leading manufacturers of electronic
devices and computer components, including micro-
processors and chipsets for client computing systems
and data centers, chips for artificial intelligence sys-
tems and the Internet of Things, and non-volatile
memory.

One of the key services of the cloud platform is
VMaaS (Virtual Machine as a Service), which provides
virtual infrastructure. By analyzing the reservation
statistics of virtual machines within the internal cloud
(Figure 1), one can infer that there is a continuous in-
crease in the demand for virtual infrastructure, there-
by necessitating a greater emphasis on ensuring the
service's stability and reliability.

The aim of the research is to develop a method and
system for testing the availability of virtual machine
deployment service in the cloud based on Prometheus
and Selenium [3], characterized by the following scien-
tific novelty:

- Implementation of a service for testing virtual
machine deployment in the cloud;

— Integration of Prometheus and Selenium tools
with the deployment service and defining scenarios
for monitoring and testing cloud resources;

— A new method for collecting and analyzing data
on availability using Prometheus and Selenium, in-
cluding identifying performance issues and optimizing
the operation of the virtual machine deployment ser-
vice in the cloud.

VM reservation count
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Fig. 1. The Number of Reservations for Virtual Machines in the VMaa$ System from 06th January 2023 to 01st April 2023




Tpyabl y4eOHbBIX 3aBeJeHnH cBA3u. 2023. T. 9. Ne 3

Research Methods

The main functional requirement for testing a cloud
subsystem is the ability to create and delete a virtual
machine with specified characteristics such as memory,
processor, and disk size. As a part of this research a user
interface was chosen for interaction with the testing
system. This allowed not only to ensure the maximum
correspondence of the test scenario with the end user
behavior in the system, but also to organize the collec-
tion of metrics for analyzing the quality of services that
provide functionality, with the aim of identifying poten-
tial problems before users report them.

The following functional requirements were formu-
lated for the developed subsystem:

1) Implementation of login to the cloud system;

2) Navigation through the interface, localization,
and selection of the virtual machine deployment ser-
vice;

3) Creation and deletion of virtual machines;

4) Checking the readiness status of the virtual ma-
chine;

5) Calculation of key service metrics:

— Tracking login time;
- Tracking virtual machine creation time;
- Tracking the overall scenario execution time.

When choosing key metrics, the need for further
predicting the service availability using mathematical
models and event forecasting algorithms to achieve
business goals was considered [4-6]. Creating a virtu-
al machine through the user interface is a process with
many steps, each of which must be considered from
the perspective of potential errors and their corre-
sponding handling, including ensuring reliable and
stable system behavior in case the task unexpectedly
fails.

Therefore, the following non-functional require-
ments were formulated:

- Running the scenario at a specified frequency and
schedule;

— Automatically retrying unsuccessful operations
during scenario execution. Configure the waiting in-
terval between retries and the number of retries;

- Global time limit for the entire scenario. If the
scenario exceeds the specified limit, it should be forci-
bly terminated.

To implement the test scenario with the formulated
functional and non-functional requirements, the Py-
thon programming language, and the selenium-python
library [7] based on the Selenium WebDriver were
chosen. Python is a widely used language [8] that al-
lows applications of varying complexity to be imple-
mented in a short time. It has simple and understand-
able syntax, lack of additional performance require-
ments, and ease of debugging and testing make it an
ideal candidate for this research.

Selenium WebDriver [9], together with the seleni-
um-python library, is widely used for testing web ap-

plications and allows for emulating user interaction
with the browser.
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Fig. 2. System Architecture

Based on the formulated functional and non-
functional requirements, a corresponding architecture
was developed (Figure 2). Kubernetes, an open-source
software for automating deployment, scaling, and
management of containerized applications, was cho-
sen as the platform for implementation, along with a
special type of Kubernetes resource — Cronjob. This
type of resource enables the scheduling and execution
of tasks at specific times, controlling the schedule and
frequency, managing retries in case of errors, and set-
ting a global limit on task execution. The Selenium
Grid subsystem [10] was used to interact with the user
interface of the virtual machine deployment cloud ser-
vice. This component provides a platform for remote
script execution using WebDriver, enabling parallel
execution of test scenarios by running them on differ-
ent instances of remote browsers. VMaaS$ is a cloud
service that provides a platform for deploying virtual
machines. Prometheus was chosen as the main system
for collecting and storing metrics, which also handles
metric processing and notification generation. Alert-
manager processes notifications generated by Prome-
theus and forwards them to VictorOps. This compo-
nent manages and processes incidents in real-time and
allows for notifying relevant teams in case of prob-
lems. Prometheus Pushgateway serves as an interme-
diate layer between short-lived tasks and the main
Prometheus server. This component is necessary be-
cause Prometheus operates on a pull model where it
periodically scrapes target objects for metric collec-
tion via a short interval, while tasks run on their own
schedule, and for efficient metric collection, a push
model needs to be implemented. During task execu-
tion, the task sends an HTTP (Hypertext transfer pro-
tocol) request to Prometheus Pushgateway, which
temporarily stores metrics and serves as the target
object for Prometheus. To create and configure graphs,
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Proceedin

diagrams, and other metric visualization panels,
Grafana [11] was along with Prometheus.

To evaluate the availability of the virtual machine
deployment service, key metrics were selected. The
primary metric was chosen as the user login time,
which is the time during which the user is authenticat-
ed and authorized using registered credentials. The
measurement was taken from the moment the login
form appeared until the user was shown the main
screen with the ability to launch a virtual machine. The
following time_monitor function was proposed for
calculating time metrics.
@contextmanager
def time monitor(

self, metric name:

Optional [datetime] None
) :

str, start time:

start time =
try:
yield
finally:
self.metrics[metric name] =
(datetime.now () start time).seconds

start time or datetime.now ()

The usage of this function for the login process is as
follows:

wrapped login = retry(
on exception=WebDriverException,
to exception=LoginError,
attempts=self.login retry count,
sleep interval=self.login retry interval
) (self.login)
with self.time monitor('login'):
wrapped login ()

The next key metric selected was the instance
launch time, which determines the acceptable limit for
the time we expect the virtual machine to be ready.

with self.time monitor ('launch instance’,
start time) :
self.driver.find element (
By.XPATH,
"//button[@class="btn btn-primary'
text () = 'Launch Instance']"
) .click()
logger.info (f'Instance launched:
{start _time}"')
self.wait running instance ()

and

If this limit is exceeded, the script will terminate
with an error.

deadline = datetime.now () timedel-
ta (seconds=self.wait deadline seconds)
while True:
if datetime.now () deadline:
raise VmProvisioningTimeout (
f'VM provisioning exceeds wait dead-
line.'
'{self.wait deadline seconds}'

)

The last key metric identified was the total time it
took to create a virtual machine, including processing
expected exceptional situations, repeating operations,
waiting for the machine to be ready, and deleting it.
Machine deletion is an important part of completing

the testing scenario, as all resources allocated during
the process must be freed up.

The virtual machine launch time metric was ana-
lyzed, and a threshold value was determined, which
was used in Prometheus to create notifications. To se-
lect the optimal method for determining the threshold
value, it was necessary to check if the distribution was
normal. To do this, the Shapiro-Wilk test was used [12].
The basis of the test is to check the null hypothesis - the
data is normally distributed. The alternative hypothesis
is that the data does not have a normal distribution. The
result of the Shapiro-Wilk criterion is a statistical value
and a p-value. In most cases, the threshold value is
taken as 0.05. If the p-value is less than 0.05, the null
hypothesis is rejected. The SciPy library of the Python
language was used for implementation. The input data
was an array of virtual machine launch time metrics
from Prometheus over the past 7 days.
from scipy.stats import shapiro

from datetime import timedelta, datetime
from prometheus import PrometheusClient

p = PrometheusClient (PROMETHEUS ADDRESS,
PROMETHEUS USER, PROMETHEUS PASSWORD)

query = 'vm test provisioning seconds'
end = datetime.now ()

start = end timedelta (days=7)

step = 600 # 10 min

input list =

p.make range query(start.timestamp(),
end.timestamp (), step, query)

statistic, p value = shapiro(input list)

print ('Statistic:', statistic)
print ('p-value:', p value)

alpha = 0.05
if p value alpha:

print ('fail to reject HO)'")
else:

print ('reject HO'")

As a result, a low p-value of 2.098965063816978e-
31 was obtained, based on which the null hypothesis
was rejected, and it was concluded that the data did
not have a normal distribution.

To calculate the threshold value, the following
method was used - the sum of the median and three
absolute deviations [13]:

Threshold = Median + 3 * MAD

The median of the data was calculated using the
Numpy library in Python, and the mean absolute devi-
ation was computed.

import numpy as np

median = np.median (input list)

mad = np.median (np.abs (input list median))
threshold = median 3 mad

print ("Median: ", median)

print ("MAD: ", mad)

print ("Threshold: ", threshold)
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As a result, the median was calculated to be 131.5,
the mean absolute deviation was 12.5, and the thresh-
old value was determined to be 169.

Results and discussion

A system that collects various key parameters of a
cloud virtual machine deployment service was devel-
oped, based on a real-world scenario that simulates
user behavior.
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After analyzing the collected data (Figure 3) using
the method of summing the median and three absolute
deviations, a threshold value of 169 was calculated,
which can be used in Prometheus in an expression
describing a potential issue in the virtual machine de-
ployment service. Exceeding this threshold indicates a
deviation from the expected values and requires im-
mediate escalation and technical investigation of the
causes by the relevant support team [14].
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Fig. 3. Virtual Machine Launch Time

Conclusion

The main result of the work is the developed sys-
tem for testing the availability of virtual machines and
the integration method into the monitoring system of
the internal cloud service of Intel company. The main
test case was proposed and implemented - creating
and deleting a virtual machine using the user interface,
and trigger activation criteria were defined. During the
operation of cloud environments using this system,
problematic areas in the architecture of the virtual
machine creation service were identified, which al-
lowed for timely optimization of the cloud system's
operation. By analyzing the collected data, problems
with the performance of the web interface were iden-
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