Tpyabl y4eOHbBIX 3aBeJeHnH cBA3u. 2023. T. 9. Ne 3

Hayunas craTbsi (@) BY 4.0

YK 681.3.06
DOI:10.31854/1813-324X-2023-9-3-68-73

Development of an Accessibility Testing System
for the Virtual Machine Deployment Service
in the Cloud

® Andrey Marchenko®™, mar4enko.ag@gmail.com
© Dmitry Shchemelinin, dshchmel@gmail.com

Intel Corporation,
Santa Clara, United States of America

Abstract: This paper presents a developed system for testing the accessibility of the virtual machine deployment
service in the cloud. The methods used for monitoring cloud systems based on open-source solutions such as
Kubernetes, Prometheus, and Selenium are discussed. The key stages of the system design are described, including
requirements gathering and analysis, architecture, and implementation features. This system allows for the
prevention of potential issues before they arise, as well as increasing IT service reliability. Integration with open -
source systems helps to reduce the cost of system development and operation and speeds up implementation time.
Additionally, this system can be quickly adapted and customized to meet specific needs. To analyze the feasibility of
building the system, production statistics of virtual machine reservations were collected using the Prometheus
monitoring system.

Keywords: information technology, monitoring, information processing, monitoring metrics, cloud technologies,
application testing, Prometheus, Selenium, Kubernetes, Cronjobs, Python

For citation: Marchenko A., Shchemelinin D. Development of an Accessibility Testing System for the Virtual Ma-

chine Deployment Service in the Cloud. Proc. of Telecommun. Univ. 2023;9(3):68-73. D0I1:10.31854/1813-324X-
2023-9-3-68-73

Pa3pab6oTKa cucTeMbl TeCTUPOBAaHUS
AOCTYIIHOCTH CEpPBHCA pa3BepPTbIBAHUA
BHPTYyaJ/IbHbIX MAILIUH B 00JIaKe

® Anppeii TennaabeBny Mapuenko®™, mar4enko.ag@gmail.com

© ImuTpuii Anekcangposuyd lllemenannus, dshchmel@gmail.com

Kopmnoparus Intel,
CanTa-Kiapa, CoeanHenHble LllTaThl AMEpUKU

AHHOTauMA: B daHHoll cmambe npedcmas/eHa pa3pabomaHHas cucmema mecmuposarus docmynHocmu cepau-
ca pazeepmul8aHuUsl BUPMYANbHLIX MAWUH 8 0b.1ake. PaccmompeHrbl Memodbl, Ucno1b3yemsle 019 MOHUMOPUH2A
06/1a4HbIX cuCmeM Ha OCHOBe peuwleHUll C OMKpbIMbIM UCX0OHbIM Kodom (om aHea. Opensource), makue Kak
Kubernetes, Prometheus u Selenium. OnucaHbl KAK4egble 3mansl NPOEKMUPOBAHUSL CUCMeMbl, A UMEHHO c60p U
aHa/aus mpebosaHuli, apxumekmypa, a makijce 0co6eHHocmu peaauzayuu. /JaHHas cucmema nosgoisiem npedy-
npedums 803MOJCHble NPob.1eMbl 00 UX BO3HUKHOBEHUS, d MaKice nosblcums HadexcHocmb cepauca. Mnmezpayus
€ cucmemamu Ha OCHOB8e OMKPbIMbIX UCXOOHbIX KOO08 N0380./151em YMEeHbWUMb CMoUMOCMb paspabomku U 3Kc-

© Mapuenko A.I', llemenunuH A, 2023

https://orcid.org/0009-0001-9276-3907
https://orcid.org/0000-0003-3032-130X
https://orcid.org/0009-0001-9276-3907
https://orcid.org/0000-0003-3032-130X

Proceedings of Telecommun. Univ. 2023. Vol. 9. Iss. 3

njayamayuu cucmembvl, d makie yCKOpumMs Cpoku 8HedpeHust. [JaHHas cucmema makyce Moxcem 6bimb 6bICMPO
adanmupoeaHa u HaCMpoeHda ¢ yyemom KOHKpemHbix nompe6Hocmetl. [lis aHaau3a yeaecoobpasHocmu nocmpo-
eHuUsl cucmeMbl 6bL1a COOPAHA NPOU3BOACMBEHHAS] CMAMUCMUKA pe3epaupos8aHuli 8UpmyasbHblX MAWUH C NOMO-

Wb cucmemsl MOHUMOpUHZa Prometheus.

KioueBble cji0Ba: uHopMmayuoHHble MexXHO102Ul, MOHUMOPUHZ, 06pabomka uHgopMayuu, MempuxKu MOHUMOPUH-
2a, 06/1a4Hble MexXHO102Ul, mecmuposaHue npuaodiceHull, Prometheus, Selenium, Kubernetes, Cronjobs, Python

Ccbuika A putupoBaHus: Mapyenko AT, lllemenunuH /I.A. Pa3paboTka cucTeMbl TECTUPOBAHUS JJOCTYITHO-
CTH CepBHCa pPa3BepThIBAaHUS BUPTYyaJbHbIX MalllMH B obJiake // Tpyabl yue6HbIX 3aBeaeHuit cBsasu. 2023. T. 9.

Ne 3. C. 68-73.D0I:10.31854/1813-324X-2023-9-3-68-73

Introduction

Cloud providers offer various types of services, such
as hosting virtual machines, data storage, databases,
analytics, and more. Typically, access to these services
is provided both through a web interface and an API
(Application Programming Interface) - a set of inter-
faces for software integration with services via various
protocols. Monitoring the availability and performance
of cloud systems and services is one of the most im-
portant aspects of ensuring their stable operation, as
well as identifying and fixing issues that arise during
operation. Specialized software is used to monitor the
availability of cloud services. One popular open-source
solution is the Prometheus monitoring service [1].
This monitoring system allows you to collect and store
performance and availability data in the form of time
series - sequences of values that change over time.
The collected data can be analyzed using various
methods, such as visualization, statistical analysis, and
machine learning.

In this study, a new method for testing and monitor-
ing a cloud service was proposed. This service allows
users to rent virtual machines in the cloud and choose
one of the offered types of virtual machines with a
specified amount of RAM, processors, and storage.
This type of service is very popular for both enterpris-
es and individual users and allows significant re-
sources to be saved by providing compute resources
on demand.

The object of scientific research

The object of the research is the internal cloud plat-
form of the Intel company [2], which allows develop-
ers and researchers to use computing resources to test

and optimize their applications and algorithms. The
platform also provides extensive capabilities for man-
aging infrastructure for computing and efficient re-
source management and is used for various tasks, such
as processing big data and machine learning. Intel is
one of the world's leading manufacturers of electronic
devices and computer components, including micro-
processors and chipsets for client computing systems
and data centers, chips for artificial intelligence sys-
tems and the Internet of Things, and non-volatile
memory.

One of the key services of the cloud platform is
VMaaS (Virtual Machine as a Service), which provides
virtual infrastructure. By analyzing the reservation
statistics of virtual machines within the internal cloud
(Figure 1), one can infer that there is a continuous in-
crease in the demand for virtual infrastructure, there-
by necessitating a greater emphasis on ensuring the
service's stability and reliability.

The aim of the research is to develop a method and
system for testing the availability of virtual machine
deployment service in the cloud based on Prometheus
and Selenium [3], characterized by the following scien-
tific novelty:

- Implementation of a service for testing virtual
machine deployment in the cloud;

— Integration of Prometheus and Selenium tools
with the deployment service and defining scenarios
for monitoring and testing cloud resources;

— A new method for collecting and analyzing data
on availability using Prometheus and Selenium, in-
cluding identifying performance issues and optimizing
the operation of the virtual machine deployment ser-
vice in the cloud.

VM reservation count

01/06 01/11 01/16 01/21 01/26 01/31 02/05 02/10 02/15 02/20 02/25 03/02 03/07 03/12 03/17 03/22 03/27 04/01

Fig. 1. The Number of Reservations for Virtual Machines in the VMaa$ System from 06th January 2023 to 01st April 2023

Tpyabl y4eOHbBIX 3aBeJeHnH cBA3u. 2023. T. 9. Ne 3

Research Methods

The main functional requirement for testing a cloud
subsystem is the ability to create and delete a virtual
machine with specified characteristics such as memory,
processor, and disk size. As a part of this research a user
interface was chosen for interaction with the testing
system. This allowed not only to ensure the maximum
correspondence of the test scenario with the end user
behavior in the system, but also to organize the collec-
tion of metrics for analyzing the quality of services that
provide functionality, with the aim of identifying poten-
tial problems before users report them.

The following functional requirements were formu-
lated for the developed subsystem:

1) Implementation of login to the cloud system;

2) Navigation through the interface, localization,
and selection of the virtual machine deployment ser-
vice;

3) Creation and deletion of virtual machines;

4) Checking the readiness status of the virtual ma-
chine;

5) Calculation of key service metrics:

— Tracking login time;
- Tracking virtual machine creation time;
- Tracking the overall scenario execution time.

When choosing key metrics, the need for further
predicting the service availability using mathematical
models and event forecasting algorithms to achieve
business goals was considered [4-6]. Creating a virtu-
al machine through the user interface is a process with
many steps, each of which must be considered from
the perspective of potential errors and their corre-
sponding handling, including ensuring reliable and
stable system behavior in case the task unexpectedly
fails.

Therefore, the following non-functional require-
ments were formulated:

- Running the scenario at a specified frequency and
schedule;

— Automatically retrying unsuccessful operations
during scenario execution. Configure the waiting in-
terval between retries and the number of retries;

- Global time limit for the entire scenario. If the
scenario exceeds the specified limit, it should be forci-
bly terminated.

To implement the test scenario with the formulated
functional and non-functional requirements, the Py-
thon programming language, and the selenium-python
library [7] based on the Selenium WebDriver were
chosen. Python is a widely used language [8] that al-
lows applications of varying complexity to be imple-
mented in a short time. It has simple and understand-
able syntax, lack of additional performance require-
ments, and ease of debugging and testing make it an
ideal candidate for this research.

Selenium WebDriver [9], together with the seleni-
um-python library, is widely used for testing web ap-

plications and allows for emulating user interaction
with the browser.

WebU!' request

Selenium
VictorOps. Grid
W)
lebDriver’

+
Remote WebDriver request

Short-lived
letts jobs
1 1
! !
Push IM efrics Get N!etrics
v v

Prometheus Pull
Alertmanager Push -
Gateway Metrics

D ettt

Send Grafana

Prometheus
Server

Send Aletts
Fig. 2. System Architecture

Based on the formulated functional and non-
functional requirements, a corresponding architecture
was developed (Figure 2). Kubernetes, an open-source
software for automating deployment, scaling, and
management of containerized applications, was cho-
sen as the platform for implementation, along with a
special type of Kubernetes resource — Cronjob. This
type of resource enables the scheduling and execution
of tasks at specific times, controlling the schedule and
frequency, managing retries in case of errors, and set-
ting a global limit on task execution. The Selenium
Grid subsystem [10] was used to interact with the user
interface of the virtual machine deployment cloud ser-
vice. This component provides a platform for remote
script execution using WebDriver, enabling parallel
execution of test scenarios by running them on differ-
ent instances of remote browsers. VMaaS$ is a cloud
service that provides a platform for deploying virtual
machines. Prometheus was chosen as the main system
for collecting and storing metrics, which also handles
metric processing and notification generation. Alert-
manager processes notifications generated by Prome-
theus and forwards them to VictorOps. This compo-
nent manages and processes incidents in real-time and
allows for notifying relevant teams in case of prob-
lems. Prometheus Pushgateway serves as an interme-
diate layer between short-lived tasks and the main
Prometheus server. This component is necessary be-
cause Prometheus operates on a pull model where it
periodically scrapes target objects for metric collec-
tion via a short interval, while tasks run on their own
schedule, and for efficient metric collection, a push
model needs to be implemented. During task execu-
tion, the task sends an HTTP (Hypertext transfer pro-
tocol) request to Prometheus Pushgateway, which
temporarily stores metrics and serves as the target
object for Prometheus. To create and configure graphs,

s of Telecommun. Univ. 2023. Vol. 9. Iss. 3

Proceedin

diagrams, and other metric visualization panels,
Grafana [11] was along with Prometheus.

To evaluate the availability of the virtual machine
deployment service, key metrics were selected. The
primary metric was chosen as the user login time,
which is the time during which the user is authenticat-
ed and authorized using registered credentials. The
measurement was taken from the moment the login
form appeared until the user was shown the main
screen with the ability to launch a virtual machine. The
following time_monitor function was proposed for
calculating time metrics.
@contextmanager
def time monitor(

self, metric name:

Optional [datetime] None
) :

str, start time:

start time =
try:
yield
finally:
self.metrics[metric name] =
(datetime.now () start time).seconds

start time or datetime.now ()

The usage of this function for the login process is as
follows:

wrapped login = retry(
on exception=WebDriverException,
to exception=LoginError,
attempts=self.login retry count,
sleep interval=self.login retry interval
) (self.login)
with self.time monitor('login'):
wrapped login ()

The next key metric selected was the instance
launch time, which determines the acceptable limit for
the time we expect the virtual machine to be ready.

with self.time monitor ('launch instance’,
start time) :
self.driver.find element (
By.XPATH,
"//button[@class="btn btn-primary'
text () = 'Launch Instance']"
) .click()
logger.info (f'Instance launched:
{start _time}"')
self.wait running instance ()

and

If this limit is exceeded, the script will terminate
with an error.

deadline = datetime.now () timedel-
ta (seconds=self.wait deadline seconds)
while True:
if datetime.now () deadline:
raise VmProvisioningTimeout (
f'VM provisioning exceeds wait dead-
line.'
'{self.wait deadline seconds}'

)

The last key metric identified was the total time it
took to create a virtual machine, including processing
expected exceptional situations, repeating operations,
waiting for the machine to be ready, and deleting it.
Machine deletion is an important part of completing

the testing scenario, as all resources allocated during
the process must be freed up.

The virtual machine launch time metric was ana-
lyzed, and a threshold value was determined, which
was used in Prometheus to create notifications. To se-
lect the optimal method for determining the threshold
value, it was necessary to check if the distribution was
normal. To do this, the Shapiro-Wilk test was used [12].
The basis of the test is to check the null hypothesis - the
data is normally distributed. The alternative hypothesis
is that the data does not have a normal distribution. The
result of the Shapiro-Wilk criterion is a statistical value
and a p-value. In most cases, the threshold value is
taken as 0.05. If the p-value is less than 0.05, the null
hypothesis is rejected. The SciPy library of the Python
language was used for implementation. The input data
was an array of virtual machine launch time metrics
from Prometheus over the past 7 days.
from scipy.stats import shapiro

from datetime import timedelta, datetime
from prometheus import PrometheusClient

p = PrometheusClient (PROMETHEUS ADDRESS,
PROMETHEUS USER, PROMETHEUS PASSWORD)

query = 'vm test provisioning seconds'
end = datetime.now ()

start = end timedelta (days=7)

step = 600 # 10 min

input list =

p.make range query(start.timestamp(),
end.timestamp (), step, query)

statistic, p value = shapiro(input list)

print ('Statistic:', statistic)
print ('p-value:', p value)

alpha = 0.05
if p value alpha:

print ('fail to reject HO)'")
else:

print ('reject HO'")

As a result, a low p-value of 2.098965063816978e-
31 was obtained, based on which the null hypothesis
was rejected, and it was concluded that the data did
not have a normal distribution.

To calculate the threshold value, the following
method was used - the sum of the median and three
absolute deviations [13]:

Threshold = Median + 3 * MAD

The median of the data was calculated using the
Numpy library in Python, and the mean absolute devi-
ation was computed.

import numpy as np

median = np.median (input list)

mad = np.median (np.abs (input list median))
threshold = median 3 mad

print ("Median: ", median)

print ("MAD: ", mad)

print ("Threshold: ", threshold)

Tpyabl y4eOHbBIX 3aBeJeHnH cBA3u. 2023. T. 9. Ne 3

As a result, the median was calculated to be 131.5,
the mean absolute deviation was 12.5, and the thresh-
old value was determined to be 169.

Results and discussion

A system that collects various key parameters of a
cloud virtual machine deployment service was devel-
oped, based on a real-world scenario that simulates
user behavior.

Q vm_test_provisioning_seconds

Table Graph 2d7h

Bl 207 2023-03-05 14:55:53 %

165.00

Res. (s)

After analyzing the collected data (Figure 3) using
the method of summing the median and three absolute
deviations, a threshold value of 169 was calculated,
which can be used in Prometheus in an expression
describing a potential issue in the virtual machine de-
ployment service. Exceeding this threshold indicates a
deviation from the expected values and requires im-
mediate escalation and technical investigation of the
causes by the relevant support team [14].

o [

Load time: 67ms Resolution: 79s Result series: 1

Show Exemplars

-l | |

155.00
150.00
145.00

140.00

135.00

130.00

125.00

120.00

Mar308:00 Mar 312:00 Mar 316:00 Mar 320:00 Mar 400:00 Mar 404:00 Mar 408:00

Mar 412:00

Mar 416:00 Mar 420:00 Mar 500:00 Mar 504:00 Mar 508:00 Mar 512:00

Fig. 3. Virtual Machine Launch Time

Conclusion

The main result of the work is the developed sys-
tem for testing the availability of virtual machines and
the integration method into the monitoring system of
the internal cloud service of Intel company. The main
test case was proposed and implemented - creating
and deleting a virtual machine using the user interface,
and trigger activation criteria were defined. During the
operation of cloud environments using this system,
problematic areas in the architecture of the virtual
machine creation service were identified, which al-
lowed for timely optimization of the cloud system's
operation. By analyzing the collected data, problems
with the performance of the web interface were iden-

References

tified and eliminated, which significantly improved the
user experience of using this interface. The developed
system allows for deviations in the behavior of the
service to be recorded in a number of key parameters,
such as login time and virtual machine launch time.
This significantly reduced the response time to inci-
dents. The use of free open-source technologies such
as Prometheus and Selenium contributes to increased
efficiency and reduced costs for servicing cloud ser-
vices. The described method is an effective way of test-
ing cloud services and can also be used to analyze and
improve reliability and availability - the most im-
portant criteria for 24 /7 business applications.

1. Prometheus. Monitoring system & time series database URL: https://prometheus.io/docs/introduction/overview

[Accessed 04th April 2023]

2. Official intel web site. URL: https://www.intel.com [Accessed 04th April 2023]
3. Selenium. The selenium browser automation project. URL: https://www.selenium.dev/documentation [Accessed 04th

April 2023]

4. Shchemelinin D. Mathematical Models and Methods for Monitoring and Predicting the State of Globally Distributed
Computing Systems. Proc. of Telecom. Universities. 2021;7(3):73-78. (in Russ.) DOI:10.31854/1813-324X-2021-7-3-73-78

5. Shchemelinin D. A method for predicting events in globally distributed computing complexes. Modern Science: Current
Issues in Theory and Practice. Series: Natural Technical Sciences. 2021;12-2:47-54. (in Russ.) DOI:10.37882/2223-2966.2021.

12-2.16

6. Shchemelinin D. Method and algorithm for automatic recovery of information services based on objective predictive
monitoring data. Modern Science: Current Issues in Theory and Practice. Series: Natural Technical Sciences. 2021;8:140-144.

(in Russ.) DOI1:10.37882/2223-2966.2021.08.41

7. Selenium with Python. URL: https://selenium-python.readthedocs.io [Accessed 04th April 2023]

8. The TIOBE Programming Community index an indicator of the popularity of programming languages. URL:
https://www.tiobe.com/tiobe-index [Accessed 04th April 2023]

9. Raghavendra S. Python Testing with Selenium: Learn to Implement Different Testing Techniques Using the Selenium
WebDriver. Berkeley: Apress; 2020. 196 p.

10. Selenium. When to Use Selenium Grid. URL: https://www.selenium.dev/documentation/grid/applicability [Accessed
04th April 2023]

11. Grafana Labs. Grafana documentation. URL: https://grafana.com/docs/grafana/latest [Accessed 04th April 2023]

12. Razali N.M., Wah Y.B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests.
Journal of Statistical Modeling and Analytics. 2011:2(1):21-33. URL: https://www.nrc.gov/docs/ML1714/ML17143A100.pdf
[Accessed 04th April 2023]

13. Leys C, Ley C,, Klein O., Bernard P., Licata L. Detecting outliers: Do not use standard deviation around the mean, use
absolute deviation around the median. journal of Experimental Social Psychology. 2013;49(4):764-766. URL:
https://www.sciencedirect.com/science/article/pii/S0022103113000668 [Accessed 04th April 2023]

14. Shchemelinin D. System of criteria and algorithm of information processing and decision-making for the software
module for displaying the most significant monitoring events in the information system. XXI century: Results of the Past and
Challenges of the Present plus. 2021;10(3):67-71. (in Russ.) DOI:10.46548/21vek-2021-1055-0012

CnUCOK UCTOYHHKOB

1. Monitoring system & time series database // Prometheus. URL: https://prometheus.io/docs/introduction/overview
[Accessed 04th April 2023]

2. Official intel web site. URL: https://www.intel.com [Accessed 04th April 2023]

3. The selenium browser automation project // Selenium. URL: https://www.selenium.dev/documentation [Accessed
04th April 2023]

4. lllemenunuH JI.A. MaTeMaTH4YeCcKHe MOJIeJIM U METO/bI MOHUTOPHHIA U NPOrHO3UPOBAHHUSA COCTOSIHUS IJI06AJBHO pac-
npe/ieJIeHHbIX BBIYUCIUTENbHBIX KOMIIEKCOB // Tpyabl yue6HbIX 3aBefjeHnH cBsi3u. 2021. T. 7. Ne 3. C. 73-78. D0OI:10.31854/
1813-324X-2021-7-3-73-78

5. lllemenunuH /[.A. MeToZ NpOrHO3MPOBAHUSA COOBITHUH B IJI06A/JIbLHO paclpeie/IeHHbIX BbIYMCIUTENBHBIX KOMILJIEKCAX.
CoBpeMeHHas HayKa: aKTyaJlbHble BOIPOChI TEOPUU U NpaKTUKU. Cepus: EcTecTBeHHble U TexHUYecKHe Hayku. 2021, Ne 12-2.
C.47-54.D0I1:10.37882/2223-2966.2021.12-2.16

6. lllemenunuH /J.A. MeToA M aJIrOpUTM aBTOMATHYECKOTO BOCCTAHOBJEHHS MHGOPMALMOHHBIX CEPBHUCOB HAa OCHOBE
06'beKTHUBHBIX NPEAUKTHUBHBIX JaHHbIX MOHUTOpPUHIa. CoBpeMeHHasl HayKa: aKTyaJIbHble BOIPOCHI TEOPUHM U NMPAKTHUKH.
Cepusi: EcTrecTBeHHbIe U TexHUYecKHe Hayku. 2021. Ne 8. C. 140-144. D0OI1:10.37882/2223-2966.2021.08.41

7. Selenium with Python. URL: https://selenium-python.readthedocs.io [Accessed 04th April 2023]

8. The TIOBE Programming Community index an indicator of the popularity of programming languages. URL:
https://www.tiobe.com/tiobe-index [Accessed 04th April 2023]

9. Raghavendra S. Python Testing with Selenium: Learn to Implement Different Testing Techniques Using the Selenium
WebDriver. Berkeley: Apress, 2020. 196 p.

10. When to Use Selenium Grid // Selenium. URL: https://www.selenium.dev/documentation/grid/applicability [Ac-
cessed 04th April 2023]

11. Grafana documentation // Grafana Labs. URL: https://grafana.com/docs/grafana/latest [Accessed 04th April 2023]

12. Razali N.M.,, Wah Y.B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests //
Journal of Statistical Modeling and Analytics. 2011. Vol. 2. No. 1. PP. 21-33. URL: https://www.nrc.gov/docs/ML1714/
ML17143A100.pdf [Accessed 04th April 2023]

13. Leys C, Ley C, Klein O., Bernard P., Licata L. Detecting outliers: Do not use standard deviation around the mean, use
absolute deviation around the median // Journal of Experimental Social Psychology. 2013. Vol. 49. Iss. 4. PP. 764-766. URL:
https://www.sciencedirect.com/science/article/pii/S0022103113000668 [Accessed 04th April 2023]

14. WWemenuuuH [J.A. Cuctema KputepueB U aJroputm o6paboTku HHOPMAL MU U NPUHATUS pellleHUH i IporpaMM-
HOT'0 MOAYJIsI 0TOOpaXKeHHs1 HauboJiee 3HAUUMBbIX COObITUM MOHUTOPUHIAa B UHGOpMaLoHHOH cucteMe // XXI Bek: UTOTU
MpOLLIOro U nmpo6JieMbl Hactosiero mitoc. 2021. T. 10. Ne 3(55). C. 67-71. DOI: 10.46548/21vek-2021-1055-0012

CraTbsa noctynuia B pegakuuio 20.02.2023; ogobpena nocie peneHsupoBanus 27.02.2023; npuHaTa K My6/1u-
kauuu 25.03.2023.
The article was submitted 20.02.2023; approved after reviewing 27.02.2023; accepted for publication 25.03.2023.

UHpopmanua 06 aBTopax:

apXUTEKTOP «06JIaYHbIX» TpuaoxkeHui Software and Advanced Technology
Group, kopriopanus Intel
® https://orcid.org/0009-0001-9276-3907

MAPYEHKO
Aungpeit leHHagbeBUY

JIOKTOP TEXHUYECKUX HayK, BUlle-npe3ueHT Software and Advanced Technology
Group, kopniopauust Intel
© https://orcid.org/0000-0003-3032-130X

HIEME/IMHUH
AMMTpHM# AleKCaHAPOBUY

https://tuzs.sut.ru/
https://selenium-python.readthedocs.io/
https://www.tiobe.com/tiobe-index/
https://grafana.com/docs/grafana/latest/
https://www.sciencedirect.com/science/article/pii/S0022103113000668
https://www.intel.com/
https://www.selenium.dev/documentation/
https://selenium-python.readthedocs.io/
https://www.tiobe.com/tiobe-index/
https://grafana.com/docs/grafana/latest/
https://www.sciencedirect.com/science/article/pii/S0022103113000668
https://orcid.org/0009-0001-9276-3907
https://orcid.org/0000-0003-3032-130X

