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трафика в спутниковых коммуникационных каналах. Производительность этих методов, основанных на 
GNN, сравнивается с традиционными алгоритмами многослойного персептрона (MLP). Результаты пока-
зывают, что GNN обладают превосходной точностью и эффективностью по сравнению с MLP, что 
подчеркивает их потенциал для применения в системах спутниковой связи. Кроме того, в рамках иссле-
дования изучается влияние различных факторов на производительность алгоритма GNN, предоставляя 
информацию о наиболее эффективных стратегиях реализации GNN в задачах классификации трафика. 
Это исследование предлагает ценные знания о преимуществах и потенциальных применениях GNN в 
системах спутниковой связи. 
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1. Introduction 

In the realm of modern communication, there exists 
an intricate web of infrastructure known as a satellite 
communication system [1]. This system facilitates the 
transfer of information by means of communication 
satellites, intertwining various components on the 
ground, such as antennas, ground stations, and control 
centers, with the celestial entities themselves.  

The demand for high-speed communication and data 
services has led to the rapid expansion of satellite com-
munication [2] systems, which are particularly useful 
for providing global connectivity in remote areas where 
terrestrial infrastructure is limited. Despite their 
unique advantages, satellite communication channels 
present distinct challenges, such as global coverage, 
higher latency, higher cost, atmospheric interference, 
and limited bandwidth and spectrum allocation. Effi-
cient management of network resources [3] is crucial 
for satellite communication channels, and expanding 
capacity may be more feasible in terrestrial networks 
through the addition of more infrastructure or ad-
vanced technologies. 

The utilization of satellite communication channels 
presents notable benefits when compared to alterna-
tive channels, particularly in terms of global coverage 
encompassing even the most remote regions. These 
channels possess expansive bandwidth capacities that 
facilitate the seamless transmission of real-time video 
streams and large-scale data transfers. Moreover, 
through the implementation of point-to-multipoint 
communication [4], the dissemination of information to 
numerous recipients becomes possible. The deploy-
ment of satellites is characterized by its expeditious-
ness and scalability, thereby guaranteeing steadfast 
and redundant connectivity that operates autono-
mously from terrestrial networks [5]. Notably, satel- 
lites play a pivotal role in enabling long-range and mo-
bile communication [6], while their varied orbital paths 
confer a remarkable degree of geographical adaptabil-

ity [7]. It is worth highlighting that satellite communi-
cation finds application in various domains, including 
but not limited to telecommunications, broadcasting, 
remote sensing, military communications, and disaster 
response. 

In the conventional realm, the process of traffic clas-
sification within satellite networks finds its execution 
primarily within the terrestrial segment, more specifi-
cally, at either the Network Operations Center (NOC) or 
the teleport. Employing techniques such as deep packet 
inspection, protocol analysis, port-based classification, 
and quality of service parameters, serves as the cus-
tomary approach in this regard. The overarching objec-
tive of traffic classification is to facilitate the judicious 
allocation and exploitation of the satellite network's ca-
pacity and resources, thereby guaranteeing optimal 
performance across a diverse array of traffic categories. 

One of the critical aspects of managing satellite com-
munication channels is the efficient classification of 
network traffic, which directly impacts the overall per-
formance and quality of service (QoS) [8]. Conse-
quently, there is a growing interest in the development 
of advanced traffic classification methods for satellite 
communication channels. 

In addition, an alternative proposition arises, entail-
ing the exploitation of graph neural networks (GNNs) 
to undertake traffic classification within satellite net-
works. GNNs, being a distinctive form of deep learning 
model, demonstrate an inherent capacity to capture in-
tricate relationships and intricate patterns intrinsic to 
graph-structured data. Through the conceptualization 
of network traffic as a graph, wherein nodes symbolize 
data flows and edges signify relationships, the deploy-
ment of GNNs holds the potential to enhance the preci-
sion and efficacy of traffic classification endeavors. 

Graph Neural Networks (GNNs) are a powerful tool 
for complex problem solving in domains such as com-
puter vision, natural language processing, and network 
analysis [9, 10]. They can effectively classify network 
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traffic, detect anomalies, and handle large-scale da-
tasets in satellite communication channels [11]. GNNs' 
adaptability to dynamic changes in network traffic pat-
terns and transfer learning capabilities make them val-
uable for optimizing bandwidth usage, improving QoS, 
and enhancing the overall user experience. Further-
more, pre-training on large datasets and fine-tuning on 
specialized ones can lead to improved classification ac-
curacy and efficiency. 

In this paper, we present a comprehensive analysis 
of the application of GNNs, specifically Graph Convolu-
tional Networks (GCN) [12] and Graph Attention Net-
works (GAT) [13], for traffic classification in satellite 
communication channels. Our study aims to methodi-
cally and empirically examine the performance of these 
GNN models, comparing them with traditional Multi-
Layer Perceptron (MLP) algorithms. By evaluating the 
accuracy and efficiency of these methods, we seek to ex-
plore the potential advantages of GNNs in satellite com-
munication systems. 

Overall, this paper contributes to the growing body 
of knowledge on the benefits and potential applications 
of GNNs in satellite communication systems, particu-
larly in the context of traffic classification. Our findings 
will not only advance the understanding of GNN-based 
methods but also pave the way for the development of 
more efficient and robust traffic classification tech-
niques in satellite communication channels. 

 
2. Literature Review 

Satellite resource optimization and management have 
been extensively researched due to the growth of inter-
net communications. Wenjuan [14] proposed a novel 
traffic classification routing (TCR) algorithm for Low 
Earth Orbit Satellite (LEO) satellite networks, which uses 
traffic classification link-cost metrics (TCM) to optimize 
network resource utilization for multimedia applica-
tions. TCR algorithm introduces a blocking-probability 
filter mechanism and a server reservation priority queue 
(SRPQ) mechanism to improve performance and balance 
traffic load distribution. TCR algorithm outperformed 
single-service and multiservice routing algorithms in dif-
ferent traffic scenarios, making it a suitable choice for fu-
ture multimedia satellite networks. 

Pacheco et al. [15] developed an ML-based frame-
work for internet traffic classification in satellite com-
munications, with the goal of enhancing QoS manage-
ment. The hierarchical classification system distin-
guishes between encryption and flow patterns, surpas-
sing the performance of Deep Packet Inspection (DPI). 
The proposed system profiles internet communications 
and sends the data to a Policy-Based Network (PBN) for 
QoS management.  

In 2020, Pacheco et al. [16] developed a framework 
for internet traffic classification in satellite communica-
tions using ML and DL techniques to improve QoS [17]. 
They proposed a hierarchical classification system that 

performs well on encrypted, unencrypted, and tunneled 
traffic. The solution was tested on a cloud-emulated plat-
form and integrates an ILM for each classifier. Results 
showed improved performance over ntop DPI (nDPI). 
Future work should consider different types of tunneled 
protocols and adapt to evolving communication technol-
ogies. 

Pang et al. [18] introduced a chained graph neural 
network (CGNN) for traffic classification to overcome 
challenges posed by Network Address Translation 
(NAT), port dynamics, and encrypted traffic [19]. Their 
model uses a chained graph to capture structural and 
causal relationships in the traffic stream and builds a 
graph classifier over extracted features. Results show 
that CGNN improves application and malicious traffic 
prediction accuracy, outperforming existing neural net-
work-based traffic classifiers on real-world datasets 
while maintaining robust recall and precision metrics. 
Huoh et al. [20] proposed a GNN model for encrypted 
network traffic classification that captures packet rela-
tions, raw bytes, and metadata, outperforming tradi-
tional CNN and RNN models.  

Pang et al. [21] proposed a GNN model for network 
traffic classification that captures interaction features 
of packet flows. They designed a graph structure to em-
bed packet contents and sequence relationships into a 
unified graph and introduced a graph neural network 
framework for graph classification. The model im-
proves prediction accuracy by up to 37 % for malicious 
traffic classification and outperforms state-of-the-art 
deep learning methods. Additionally, it achieves high 
precision, recall, F1 score, and Matthews Correlation 
Coefficient, indicating strong correlation between pre- 
dicted and true values for various types of malicious 
traffic. Evaluations on real-world traffic data support 
the efficacy of the proposed model. 

This review emphasizes the significance of traffic 
classification in satellite communications and discusses 
various techniques proposed to enhance QoS manage-
ment and optimize network resources. These tech-
niques include TCR algorithm, ML-based frameworks, 
and GNN models, which outperform traditional meth-
ods in terms of accuracy, precision, recall, and F1 Score. 
These approaches also provide balanced traffic distribu-
tion in satellite networks, indicating their potential for 
improving traffic classification [22]. Future research 
should address the limitations of these methods and 
adapt to the changing communication technologies. 

 
3. Method 

This investigation utilizes Fig. 1 to demonstrate the 
methodology for evaluating GNN models in internet 
traffic classification. The methodology consists of data 
collection, preprocessing, graph creation, and classifi-
cation. The acquired internet traffic dataset is prepro-
cessed using standardization and min-max normaliza-
tion techniques to ensure optimal normalization. 
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Standardization rescales data to a mean of 0 and a 
standard deviation of 1, while min-max normalization 
scales feature values within a range of 0‒1 to allow for 
comparisons among features with varying value 
ranges. The quality of the data processing [23] is essen-
tial for evaluating the effectiveness of multiple GNN 
models in classifying internet traffic. 

After preprocessing the internet traffic data, the next 
step is to create a graph where each data point is a node 
and the edges represent relationships between them. 
This provides insight into the patterns and structures 
within the data. GNN models are then used to classify 
the network traffic data based on the information gath-
ered from the graph. 

Satellite networks serve as conduits for a diverse 
range of data, catering to an array of applications and 
services. The following categories encompass the prev-
alent types of data transmitted over satellite networks: 

+ Voice and Telephony [24]: An essential function of 
satellite networks lies in facilitating voice communica-
tion, particularly in remote regions where terrestrial 
infrastructure may be limited or absent.  

+ Internet Data: Satellite networks assume a pivotal 
role in providing internet connectivity to areas where 
terrestrial networks are not readily accessible. By means 
of satellite links, a broad spectrum of internet data, en-
compassing web pages, emails, file downloads, and 
streaming media, can be effectively transmitted. Conse-
quently, individuals, businesses, and organizations gain 
access to a vast realm of online resources and services, 
regardless of their geographical location. Notably, the 
network traffic data set published in reference [25] rep-
resents a notable example within this domain. 

+ Video and Television Broadcasting [26]: The trans-
mission of television signals constitutes a substantial 
aspect of satellite network functionality, affording 
broadcasters the means to disseminate television chan-
nels to a wide-ranging audience.  

+ Data Networks and Virtual Private Networks 
(VPNs) [27]: Satellite networks offer robust data con-
nectivity for a multitude of applications, including cor-
porate networks, government networks, and remote 
site connectivity. Through their utilization, wide-area 
networks (WANs) and virtual private networks (VPNs) 
can be established, facilitating secure and private data 
communication between disparate locations. 

+ Earth Observation Data: Satellites dedicated to 
Earth observation contribute significantly to the trans-
mission of data pertaining to the Earth's surface, atmos-
phere, and environmental conditions. This encom-
passes a vast array of information, including high-reso-
lution images, weather data, climate data, and other 
pertinent environmental parameters. 

+ Global Navigation Satellite Systems (GNSS) Data: 
Noteworthy satellite networks, such as the Global Posi-
tioning System (GPS), Galileo, and GLONASS, are re-
sponsible for transmitting navigation data to user de-
vices. This invaluable data serves as the foundation for 
precise positioning, navigation, and timing information, 
thereby enabling a plethora of applications, including 
navigation systems, geolocation services, and asset or 
vehicle tracking. 

+ Sensor Data and Telemetry: Satellites, equipped 
with sensors or scientific instruments, fulfill a critical 
role in the collection and transmission of diverse data 
types for research purposes. This encompasses a wide 
range of scientific disciplines, including space explora-
tion, astronomy, climate studies, oceanography, and re-
lated domains, thereby contributing to advancements 
in scientific knowledge. 

+ Command and Control Data [28]: In order to effec-
tively manage and operate satellites, satellite networks 
necessitate the transmission of command and control 
data.  

In this study, we evaluated the classification perfor-
mance of various GNN models on preprocessed net-
work traffic data [25], which includes five categories: 
Bulk, Video, Web, Interactive, and Idle. The dataset was 
provided as pcap files, with features extracted from the 
raw data. Details of the data are shown in Table 1. 

The network traffic dataset used in this study contains 
pcap files with features extracted from the raw infor-
mation, categorized into Bulk, Video, Web, Interactive, 
and Idle. Interactive data refers to real-time applications 
such as Google Docs or SSH sessions, while Bulk data 
transfer pertains to applications transferring large data 
volumes and Web browsing includes traffic generated 
from browsing web pages. Video playback refers to traf-
fic from streaming applications, and Idle behavior en-
compasses background traffic from a user's computer. 

TABLE 1. Data Set Composition 

Category Num of traces Duration (s) Size (MB) 

Bulk 19 3599 8704 

Video 23 4496 1405 

Web 23 4203 148 

Interactive 42 8934 30.5 

Idle 52 6341 0.69 

This research employs label encoding, min-max nor-
malization, and standardization as preprocessing tech-
niques to mitigate the adverse effects of columns with 
dissimilar value ranges on the performance of regres-
sion and classification models. Proper scaling is essen-
tial to enhance model efficiency, and established tech-
niques such as min-max normalization and z-score 
standardization are utilized for this purpose [29].  
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Fig. 1. The Research Flow 

Min-max normalization transforms feature values of 
a dataset into the [0, 1] range using a specific formula: 

𝑋normalized =
(X − 𝑋min_value )

(𝑋max_value − 𝑋min_value )
 . (1) 

The min-max normalization formula transforms fea-
ture values to fit within the [0, 1] range, with 𝑋min_value  
and 𝑋max_value representing the bounds. On the other 
hand, z-score standardization resizes features to dis-
play a normal distribution with a mean of μ = 0 and 
standard deviation of σ = 1, represented by the follow-
ing equation: 

𝑋normalized =
(𝑋 − μ)

σ
. (2) 

After data processing [30], we converted the data 
into a graph format. We constructed a separate graph 
for each traffic category, where every packet was 
treated as a node with a vector of its data. The nodes 
were connected by sequentially linking adjacent pack-
ets as an experiment. (Refer to Fig. 2 for more details.) 

This study explores the effectiveness of widely used 
GNN [31] models, GCN and GAT, for network traffic 
classification. MLP is included as a conventional model 

for comparison, with computational time evaluated for 
all models. GCN and GAT have distinct graph neural net-
work architectures, with unique strengths and weak-
nesses, and a comparative analysis will provide insights 
into the best architecture for traffic classification and 
malware detection. By benchmarking GCN and GAT, 
this study provides a reference point for developing 
new GNN models for traffic classification. 

Packet 1

Packet 2

Packet 3

Packet (n-1)

Packet n

Data File

1

2

n

Type of traffic network

 
Fig. 2. Represent Data in Graph Form 

Comparing GNN models' performance with conven-
tional models like MLP is a fruitful approach for evalu-
ating their effectiveness in traffic classification tasks. 
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This contrast can reveal the strengths and weaknesses 
of each approach, enabling the selection of the most ap-
propriate model based on computational constraints, 
accuracy requirements, and execution time considera-
tions. The following section presents GNN algorithms, 
including GCN and GAT. 

The GCN is a powerful model for graph data learning, 
particularly in network traffic classification where the 
goal is to categorize edges. To monitor traffic flow ef-
fectively, capturing edge adjacency is crucial, similar to 
how an adjacency matrix represents node connectivity. 
The current adjacency matrix 𝐴 ∈ 𝑅𝑁×𝑁  is central to 
the GCN [32] model, which uses multilayer graph con-
volution to process input data at different levels of ab-
straction. At each time step t, the lth layer of the GCN up-

dates the embedding node matrix 𝐻𝑡
(𝑙+1)

 by utilizing the 

weight matrix 𝑊𝑡
(𝑙)

 with input from the current adja-

cency matrix At and embedding node matrix 𝐻𝑡
(𝑙)

.  

This mechanism can be formally expressed as fol-
lows: 

𝐻t
(𝑙+1)

= 𝐺_CONV (𝐴t, 𝐻𝑡
(𝑙)

, 𝑊𝑡
(𝑙)

= σ(�̂�𝑡𝐻t𝑊𝑡
(𝑙)

)). (3) 

where σ is the activation function (usually ReLU). 

The G_CONV layer, a key component of the GCN, is 
similar to the perceptron, but with a distinct difference: 
its weight matrix is derived through spectrum filtering 
of the graph Laplacian matrix. This feature allows the 
G_CONV layer to effectively capture the graph structure, 
making it useful for graph-based classification tasks. 
See the parameterized model in [33]. 

𝑔θ ∗ 𝑥 = 𝑈𝑔θ𝑈𝑇𝑥, (4) 

where the G_CONV layer is similar to a perceptron, but 
its weight matrix is derived through spectrum filtering 
of the graph Laplacian matrix.  

This allows it to capture the structure of graph data 
and achieve practical graph-based classification tasks. 
The model in [34] includes a parameterized framework 
with a matrix U composed of eigenvectors of the nor-
malized graph's Laplacian matrix, denoted as θ ∈ 𝑅𝑁 . 

𝐿 = 𝐼𝑁 − 𝐷−
1

2𝐴𝐷−
1

2 = 𝑈Λ𝑈𝑇 . (5) 

The Laplacian matrix is constructed using the degree 
matrix, adjacency matrix, and eigenvalue matrix Λ. Λ is 
diagonal, and its diagonal values are the eigenvalues. 
The graph Fourier transform of a signal x is UTx. 

In equation (4), the function 𝑔θ depends on the La-
placian matrix eigenvalues. However, computing the 
Laplacian eigenvalue decomposition is computation-
ally expensive. To address this, a truncated expansion 
of the Chebyshev polynomial Tk(x) is used to approxi-
mate 𝑔θ(Λ) up to the kth order: 

𝑔θ′(Λ) ≈ ∑  

𝑘

𝑘=0

θ𝑘
′ 𝑇𝐾(Λ̃), (6) 

where the Chebyshev polynomials are utilized to ap-
proximate 𝑔θ(Λ) up to the kth order, denoted by θ′ ∈ 𝑅𝑘 . 
The matrix Λ̃, obtained by scaling and shifting the Lapla-
cian matrix Λ, captures the highest eigenvalues, and L de-
notes the number of eigenvalues encapsulated by it.  

The Chebyshev polynomials can be defined as fol-
lows: 

𝑇𝑘(𝑥) = 2𝑥𝑇𝐾−1(𝑥) − 𝑇𝐾−2(𝑥), (7) 

where 𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥. 

Equation (8) show cases the GCN model, which is 
built using convolutional layers arranged in a stacked 
multilayer equation: 

𝑔θ∗ ∗ 𝑥 ≈ ∑  

𝑘

𝑘=0

θ𝑘𝑇𝐾(�̃�), (8) 

where �̃� =
2

λmax
𝐿 − 𝐼𝑁 . 

In this context, we set a constraint on the convolu-
tion layer such that k equals 1, that is: 

𝑔θ ∗ 𝑥 ≈ θ0
′ 𝑇0(�̃�)𝑥 + θ1

′ 𝑇1(�̃�)𝑥 = θ0
′ 𝑥 + θ1

′ �̃�𝑥. (9) 

Taking the approximation λmax = 2 , we can get: 

𝑔θ′ ∗ 𝑥 ≈ θ0
′ 𝑥 + θ1

′ (𝐿 − 𝐿𝑁)𝑥 = 
(10) 

= θ0
′ 𝑥 − θ1

′ 𝐷−
1

2𝐴𝐷−
1

2𝑥. 

Furthermore, to prevent overfitting, the number of 
trainable parameters could be restricted: 

𝑔θ ∗ 𝑥 ≈ θ (𝐼𝑁 + 𝐷−
1

2𝐴𝐷−
1

2) 𝑥. (11) 

Note that θ = θ0
′ = −θ1

′  in (6). 

The range of feature values of 𝐼𝑁 + 𝐷−
1

2𝐴𝐷−
1

2 is [0, 2]. 
In the context of deep neural network models, it has 
been observed that repetitive application of a particu-
lar operation may lead to unstable values and gradient 
explosion.  

To mitigate this issue, a novel normalization tech-
nique is proposed in [34]: 

𝐼𝑁 + 𝐷−
1

2𝐴𝐷−
1

2 → �̃�−
1

2�̃��̃�−
1

2, (12) 

where �̃� = 𝐴 + 𝐼𝑁 , 𝐷𝑖𝑖 = ∑  𝑗 �̃�𝑖𝑗 . 

The attention mechanism has demonstrated consid-
erable potential in various sequence-based tasks. In 
this section, the theoretical derivation of the GAT will 
be explicated, along with a discussion of its advanta-
geous applications. GAT comprises a solitary graph at-
tention layer, while any graph attention network can be 
created by integrating numerous layers.  

To calculate the attention coefficient for the node 
pair (i, j) in this layer, the following formula is em-
ployed: 

sum𝑁 =  ∑  

𝑘∈𝑁𝑖

𝑒{LeakyReLu [𝑎𝑇(𝑊ℎ𝑖∥𝑊ℎ𝑗)]}, 



 
Электроника, фотоника, приборостроение и связь              Труды учебных заведений связи. 2023. Т. 9. № 3 

 

 20                                              tuzs.sut.ru 

 

α𝑖,𝑗 = 𝑒{LeakyReLu [𝑎𝑇(𝑊ℎ𝑖∥𝑊ℎ𝑗)]} / sum𝑁 . (13) 

The GAT employs a single graph attention layer, 
which serves as the building block for constructing any 
graph attention network by stacking multiple layers. 
The attention coefficient, denoted as α𝑖,𝑗 , for node j in 

relation to node i, where Ni denotes the neighbor node 
set of nodes i in the graph, is calculated by employing 
the concatenated vectors notation ||, and the formula 
provided in (13). The GAT's input node features are de-
noted by ℎ = {ℎ1, ℎ2, ⋯ , ℎ𝑁} , where ℎ𝑖 ∈ 𝑅𝐹 . The 
weight matrix 𝑊 ∈ 𝑅𝐹×𝐹enables weight-sharing linear 
transforma-tion among nodes. The weight vector 𝑎 ∈
𝑅2𝐹 , representing a single-layer feedforward neural 
network [35], is normalized with the softmax activation 
function and the LeakyRelu function is used for nonlin-
earity. The normalized attention coefficient α𝑖,𝑗  is used 

to compute each node's final output eigenvector ℎ′, us-
ing formula:  

ℎ𝑖
′ = σ ( ∑  

𝑗∈𝑁𝑖

α𝑖𝑗𝑊ℎ𝑗). (14) 

GAT uses the activation function σ (. ) for nonlinear-
ity and employs multi-head attention with K independ-
ent mechanisms to compute hidden state vectors for 
each node.  

The resulting vectors are concatenated to obtain the 
final output, as expressed in the mathematical formula 
for multi-head attention: 

ℎ𝑖
′ =∥𝑘=1

𝐾 σ ( ∑  

𝑗∈𝑁𝑖

α𝑖𝑗
𝑘 𝑊𝑘ℎ𝑗). (15) 

In GAT, multiple attention mechanisms are used to 
compute hidden state vectors for each node, which are 
concatenated to obtain the final output. Equation (15) in-
volves concatenation using the || symbol and employs a 
normalized attention coefficient and weight matrix.  

To address the issue of multiple eigenvectors in the 
final output, the average method is used, as shown in 
the formula: 

ℎ𝑖
′ = σ (

1

𝐾
∑  

𝐾

𝑘=1

∑  

𝑗∈𝑁𝑖

α𝑖𝑗
𝑘 𝑊𝑘ℎ𝑗). (16) 

GAT applies the average method to compute the final 
output eigenvector for each node, which contains 𝐹′ 
fused feature vectors. This simplifies the feature aggre-
gation process and improves the model's performance 
by preserving the important graph features. 

The MLP is a neural network with an input layer, one 
or more hidden layers, and an output layer. The input 
layer feeds the network with input variables, while the 
output layer generates the final output. Hidden layers 
are between the input and output layers. The MLP is 

widely used in various fields and is composed of inter-
connected neurons in a one-way and one-directional 
manner.  

The mathematical description of each layer can be 
represented by Eq: 

𝑂𝑖
(ℓ)

= φ(𝑢𝑖
(ℓ)

) = φ (∑  

𝑛ℓ

𝑗=1

𝑂𝑗
(ℓ−1)

𝑤𝑗,𝑖
(ℓ)

+ 𝑤0,
(ℓ)

), 
(17) 

1 ≤ ℓ ≤ 𝐿, 

where φ(. ) plays a crucial role in determining the out-
put of a neural network.  

For hidden layers, the activation function is typically 
a nonlinear tangent hyperbolic function, while a linear 
function is used for the output layer. In a neural net-
work with L non-input layers, the real layer is identified 
by index l, and the output of neuron i in the real layer l 
is denoted as 𝑂𝑖

𝑙 . The weights associated with the con-
nections between neurons in adjacent layers are repre- 

sented by 𝑤𝑗,1
(ℓ)

. The final output of the network is rep-

resented by 𝑂(𝐿) = 𝑦, where L is the index of the final 
layer and nL is its length. The basic architecture of an 
MLP neural network is shown in Fig. 3. 
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Fig. 3. Basic Architecture of an MLP Neural Network 

 

4. Results 

This study aimed to evaluate the effectiveness of GNN 
algorithms in network traffic classification, focusing on 
two popular algorithms: GCN, GAT, and a traditional 
MLP. The dataset was divided into three parts: training, 
validation, and test data, with an 8:1:1 ratio. The experi-
ment involved classifying network traffic into five cate-
gories (Idle, Interactive, Web, Video, Bulk) and evaluating 
the results through a multi-classification problem. In the 
experiment we will use measures such as F1-score, Re-
call and Precsision to evaluate the results. 

The Fig. 4 displays the loss value obtained while 
training the model using GCN, GAT, and MLP algo-
rithms. The results indicate that MLP had the lowest 
loss value, followed by GCN, and then GAT. Further-
more, the loss values began converging from the 80th 
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epoch onwards. These findings suggest that all three al-
gorithms effectively classify network traffic, with MLP 
being the most efficient in reducing loss, followed by 
GCN and GAT. Notably, GNN algorithms, such as GCN 
and GAT, demonstrated effectiveness in classifying net-
work traffic, which has practical applications in net-
work security and intrusion detection. 

 
Fig. 4. Loss Value for Training Data of Algorithms 

The Fig. 5 presents the accuracy of the validation da-
taset for each epoch. The study found that GCN 
achieved the highest accuracy of 92,2 %, followed by 
GAT with an accuracy of 91,12 %, and MLP with an ac-
curacy of 79,5 %. These results indicate that GCN out-
performed GAT and MLP in terms of accuracy, which 
could be attributed to GCN's ability to capture higher-
order dependencies between nodes in the graph. GAT, 
a more recent GNN architecture, performed slightly 
worse than GCN but still better than MLP, suggesting its 
potential in this domain. 

 
Fig. 5. Accuracy of Validation Data via Each Epoch of Algorithms 

Training time is crucial when selecting a model for 
classification tasks, especially when handling large da-
tasets or limited computational resources. Fig. 6 shows 
that the GCN algorithm had the shortest training time, 
followed by MLP, and then GAT. Consequently, GCN 
may be a more suitable choice for scenarios where 
speed is critical. However, it is essential to consider 
other factors, such as dataset size and complexity, com-
putational resource availability, and the required level 
of interpretability, when selecting an appropriate algo-
rithm for classification tasks. 

 
Fig. 6. Time Training of Algorithms 

Next, we will evaluate the classification of each pair 
of categories together. There are some reasons for 
these experiments. 

+ Detailed analysis: Assessing the classification per-
formance for each pair of categories individually allows 
for a more in-depth analysis of the models' strengths 
and weaknesses. This approach can reveal specific ar-
eas where the models perform well or struggle, provid-
ing valuable insights for further improvements. 

+ Identifying challenging category pairs: Some pairs 
of categories might be more challenging to distinguish 
than others due to overlapping or similar traffic pat-
terns. Evaluating the classification of each pair sepa-
rately can help identify these challenging cases, inform-
ing potential strategies to address these issues. 

+ Model selection: By comparing the performance of 
different algorithms for each pair of categories, we can 
identify the most suitable model for each pair, allowing 
for a more targeted and efficient application of the al-
gorithms in real-world scenarios. 

+ Robustness evaluation: Investigating the perfor-
mance of the classifiers for each pair of categories can 
provide insights into their robustness and adaptability 
when handling various types of traffic patterns. This 
can be especially important when the classifiers are de-
ployed in dynamic environments where traffic patterns 
might change over time. 

+ Fine-grained performance metrics: Evaluating the 
classification of each pair of categories together allows 
for calculating fine-grained performance metrics such 
as precision, recall, and F1-score for each category pair. 
These metrics can provide a more comprehensive un-
derstanding of the classifiers' performance and help 
identify areas for improvement. 

Fig. 7a provides a detailed view of the performance 
metrics for the three algorithms (MLP, GCN, and GAT) 
when classifying between the Idle and Interactive cate-
gories. MLP and GCN achieved a precision of 0,98, while 
GAT had a slightly lower precision of 0,97. This indi-
cates that MLP and GCN were slightly better at correctly 
identifying true positive cases as a proportion of all the 
predicted positive cases. MLP and GAT achieved a per-
fect recall score of 1, while GCN had a slightly lower re-
call of 0,99. This means that MLP and GAT could iden-
tify all true positive cases as a proportion of the total 
positive cases. GCN, on the other hand, missed a small 
proportion of true positive cases. 

0

100

200

300

400

500

600

700

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

Lo
ss

 v
al

ue

Epochs

GCN GAT MLP

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

A
C

cu
ra

cy
 (

%
)

Epochs

GCN GAT MLP

242

516 487

0

200

400

600

GCN GAT MLP



 
Электроника, фотоника, приборостроение и связь              Труды учебных заведений связи. 2023. Т. 9. № 3 

 

 22                                              tuzs.sut.ru 

 

  
a) b) 
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  e) f) 

 

 

g) h) 

 
 i) j) 

Fig. 7. Loss Value for Training Data of Algorithms 

The F1-score, the harmonic mean of precision and 
recall, was 0,99 for MLP and 0,98 for GCN and GAT. This 
suggests that MLP provided a better balance between 
precision and recall in classifying Idle and Interactive 
categories, followed closely by GCN and GAT. 

MLP achieved the highest accuracy of 0,98, while 
both GCN and GAT had a slightly lower accuracy of 0,97. 
This indicates that MLP was the best-performing algo-
rithm in correctly classifying both Idle and Interactive 
categories as a proportion of all cases. 
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In conclusion, based on the performance metrics 
provided, MLP demonstrated a slightly better over-
all performance in classifying between the Idle and 
Interactive categories when compared to GCN and 
GAT. However, all three algorithms showed strong per-
formance, with only minor differences in the metrics. 

Fig. 7b provides a detailed view of the performance 
metrics for the three algorithms (MLP, GCN, and GAT) 
when classifying the Idle and Web categories. MLP ex-
hibits the highest precision (0,98), but its recall (0,87) 
and accuracy (0,85) are considerably lower than those 
of GCN and GAT.  

This suggests that while MLP effectively identifies 
Idle and Web traffic cases, it struggles to capture all true 
instances within the dataset. On the other hand, GAT 
achieves perfect recall (1) and the highest F1-score 
(0,98) and accuracy (0,97), indicating a balanced per-
formance in terms of correctly identifying and classify-
ing Idle and Web traffic cases. GCN closely follows GAT, 
with an F1-score of 0,97 and an accuracy of 0,94. 

In summary, GAT demonstrates the best overall 
performance for classifying Idle and Web catego-
ries, closely followed by GCN. While MLP has the high-
est precision, its lower recall and accuracy suggest it 
may be less suitable for this specific classification task. 

Fig. 7c compares MLP, GCN, and GAT for Idle and 
Video traffic classification, revealing similar perfor-
mance among the algorithms, with only minor differ-
ences in precision and recall. F1-scores are identical at 
0,98, and accuracy scores are equal at 0,97 for all three 
models. This suggests strong performance across the 
board, with the choice of the best algorithm depending 
on the specific application requirements and con-
straints. 

In Fig. 7d, the comparison of Idle and Bulk categories 
is presented. GCN demonstrates a slight edge over MLP 
and GAT, with an accuracy of 0,99 and an F1-score of 
0,99. MLP and GAT show almost identical performance 
with accuracy and F1-scores of 0,97 and 0,98, respec-
tively. These results indicate that GCN is the most ef- 
fective in this specific classification task, but all 
three algorithms exhibit strong performance. The opti-
mal choice should be determined based on the applica-
tion's requirements and constraints. 

For the Interactive and Web categories (Fig. 7e), GCN 
outperforms the other algorithms with an accuracy of 
0,87 and an F1-score of 0,84. MLP shows moderate per-
formance with an accuracy of 0,81 and an F1-score of 
0,76. In contrast, GAT's performance is notably lower, 
with an accuracy of 0,61 and an F1-score of 0,65. These 
results suggest that GCN is the most suitable algo-
rithm for this classification task, while GAT may not 
be as effective in this specific context. As always, the 
choice of the algorithm should be guided by the unique 
requirements and constraints of the application. 

When classifying between Interactive and Video cat-
egories (Fig. 7f), both GCN and GAT excel with an accu-
racy of 0,97 and F1-scores of 0,97. MLP lags with an ac-
curacy of 0,78 and an F1-score of 0,71. The recall for 
MLP is considerably lower at 0,56, while GCN and GAT 
maintain high recall rates of 0,95 and 0,97, respectively. 
These results highlight GCN and GAT as the preferred 
algorithms for this classification task, while MLP 
may not be the optimal choice. It is crucial to consider 
the application's unique requirements and constraints 
when selecting an algorithm. 

For the Interactive and Bulk categories (Fig. 7g), GCN 
stands out with an accuracy of 0,99 and an  
F1-score of 0,98. MLP and GAT have similar accuracies 
(0,91 and 0,90, respectively) but differ in recall and  
F1-score. While MLP has a higher recall (0,8) and  
F1-score (0,89) than GAT, both algorithms have perfect 
precision (1). Given the results, GCN is the best choice 
for classifying between Interactive and Bulk catego-
ries, while MLP and GAT may be suitable alternatives 
depending on the specific context and requirements. 

When comparing the algorithms for the Web and 
Video categories (Fig. 7h), GCN outperforms MLP and 
GAT with an accuracy of 0,85 and an F1-score of 0,87. 
MLP has a significantly higher recall (0,98) but lower 
precision (0,62), resulting in an F1-score of 0,76 and ac-
curacy of 0,66. GAT demonstrates the lowest perfor-
mance, with an accuracy of 0,52, precision of 0,67, re-
call of 0,29, and an F1-score of 0,4. In this case, GCN is 
the most suitable choice for classifying Web and 
Video categories, while MLP could be considered if a 
high recall is prioritized. In comparing the algorithms 
for the Web and Bulk categories (Fig. 7i), GAT performs 
the best with an accuracy of 0,92 and an F1-score of 
0,92. GCN follows closely with an accuracy of 0,90 and 
an F1-score of 0,91, exhibiting a particularly high recall 
of 0,97. MLP has the lowest accuracy of 0,86 and an F1-
score of 0,86. Based on these results, GAT is the pre-
ferred choice for classifying the Web and Bulk cate-
gories, while GCN can be a viable alternative, particu-
larly when a high recall is desired. 

For the Video and Bulk categories (Fig. 7j), GCN out-
performs the other algorithms, achieving an accuracy 
of 0,99 and an F1-score of 0,99, with near-perfect pre-
cision and recall. GAT is the next best option, with an 
accuracy of 0,98 and an F1-score of 0,98. MLP, alt-
hough performing well in precision, has lower recall 
and thus shows a lower accuracy of 0,91 and an  
F1-score of 0,88. Based on these results, GCN is the 
optimal choice for classifying the Video and Bulk 
categories, with GAT as a strong alternative. 

In conclusion, the performance of the three algo-
rithms (MLP, GCN, and GAT) varies depending on the 
specific pair of categories being classified. However, 
some general trends can be observed. 

First of all, GCN consistently achieves high perfor-
mance across most category pairs, making it a reliable 
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and effective choice for network traffic classification 
tasks. GCN is the best choice for classifying between 
Video and Bulk, Interactive and Bulk, and Interactive 
and Video categories. 

Secondly, GAT performs strongly in several cases, 
such as classifying between Idle and Interactive, Idle 
and Video, and Video and Bulk categories. While it may 
not always outperform GCN, GAT is a promising alter-
native, especially considering its ability to capture 
higher-order dependencies. 

Third, MLP demonstrates competitive performance 
in some cases, such as classifying between Idle and In-
teractive and Idle and Web categories. However, it 
tends to be outperformed by GCN and GAT in other sce-
narios. MLP may be a suitable choice when computa-
tional resources are limited or when dealing with spe-
cific category pairs where it shows strong performance. 

Ultimately, the choice of the best algorithm for net-
work traffic classification should consider the specific 
requirements and constraints of the application, in-
cluding computational resources, desired level of inter-
pretability, and the relative importance of precision, re-
call, and accuracy. 
 
5. Conclusions 

Evaluating network traffic classification methods 
utilizing graph neural networks in satellite communica-

tion channels has yielded promising outcomes for en-
hancing the user experience. The conducted experi-
ments employing GNN models, such as GCN and GAT, 
have demonstrated their capability to classify network 
traffic data and pinpoint areas needing optimization ac-
curately. 

GNN models' capacity to consider spatial and tem-
poral dependencies in data renders them highly suita-
ble for analyzing traffic data within satellite communi-
cation channels. By detecting patterns and anomalies, 
network operators can optimize the network to reduce 
latency and packet loss, ultimately leading to significant 
improvements in user experience. 

Future research in this field could explore applying 
GNN models for network traffic classification in other 
communication networks, including cellular networks 
and IoT networks. Moreover, there is potential for in-
vestigating alternative neural network architectures 
for traffic classification, such as recurrent neural net-
works and convolutional neural networks. 

In conclusion, examining network traffic classifica-
tion methods using graph neural networks in satellite 
communication channels demonstrates that GNN mod-
els hold considerable potential for significantly enhanc-
ing user experience. This study lays the groundwork for 
further exploration of GNN models' application in net-
work traffic classification and optimization across var-
ious communication networks. 
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