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Abstract: Although low-density parity-check (LDPC) codes in modern communication standards have been exten-
sively studied over a memoryless channel, their burst error correction capacity in channels with memory has yet to be 
thoroughly analyzed. The conventional approach to transmission in channels with memory uses interleaving within 
a buffer of several codewords. However, such an approach reduces the efficiency of the redundancy embedded by the 
error-correcting code. It is known from information theory that considering channel memory during decoding allows 
the transmission rate to be increased. An evaluation of the decoding error probability of different types of low-density 
parity-check codes in channels with memory is presented along with estimates of minimum distance and burst error 
correction capability for the considered codes. The decoding error probability is estimated for conventional decoding 
with deinterleaving and decoding taking channel memory into account. The decoding error probability is estimated 
for several parameters of a channel with memory and different buffer lengths. The obtained results reveal the absence 
of the unique decoding approach for all parameters of the channel with memory. The best decoding error probability 
is determined by the degree of channel memory correlation. 
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Аннотация: Коды с низкой плотностью проверок на четность для современных стандартов связи были 
тщательно изучены при использовании в каналах без памяти, но исправление пакетных ошибок с их 
помощью не было тщательно проанализировано. В статье исследуется декодирование различных типов 
кодов с низкой плотностью проверок на четность в каналах с памятью и приводятся оценки 

https://orcid.org/0000-0002-8523-9429
https://orcid.org/0000-0002-3792-9249
https://orcid.org/0000-0002-1412-5766
https://orcid.org/0000-0002-6742-2705
https://orcid.org/0000-0002-3792-9249
https://orcid.org/0000-0002-1412-5766


 
Электроника, фотоника, приборостроение и связь              Труды учебных заведений связи. 2022. Т. 8. № 4 

 

 56                                              tuzs.sut.ru 

 

минимального расстояния и пакетной корректирующей способности для набора низкоплотностных кодов. 
Рассматриваются различные сценарии декодирования для канала Гилберта, включая обычный алгоритм 
распространения доверия, алгоритм распространения доверия с дополнительным этапом оценки 
состояния канала, введение буфера с перемежением внутри буфера. Передача по каналу Гилберта 
сравнивается с каналом без памяти. Полученные результаты показывают, что вероятность ошибки 
сильно зависит от характеристик, связанных с памятью канала. 
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Introduction 

Information processing and transmission technolo-
gies are a central feature of contemporary civilized life. 
As such, the corruption of data as a result of the trans-
mission system’s qualities, i.e., errors occurring during 
information transmission, storage, or processing, rep-
resents a highly undesirable scenario. Coding theory in-
troduces error-correction methods by adding redun-
dancy into the data, which the receiver may then utilize 
to recover the original message from the corrupted 
data [1]. Such redundancy may be added using various 
error-correcting codes, e.g., low-density parity-check 
(LDPC) codes, which are used in many modern stand-
ards. 

LDPC codes, which were invented by R. G. Gallager in 
1962 [2], are used to correct errors that appear during 
information transmission, storage, or processing. Due 
to the complexity of encoding and decoding procedures 
and computing limitations applying at that time, LDPC 
codes remained largely unused for at least 30 years. 
However, following their rediscovery by David MacKay 
in the 1990s and coinciding with a breakthrough in 
available computing power, LDPC codes became the 
topic of a new wave of interest due to offering near 
Shannon limit error correcting capability and the 
development of effective encoding and decoding 
procedures. 

Over the years, use of LDPC codes in memoryless 
channels piqued the interest of researchers due to their 
excellent error-correcting characteristics. Further-
more, LDPC codes were chosen as an error correction 
scheme in the proposed 5G communication standard 
[3]. However, since the performance of LDPC codes 
across channels with memory has not been properly in-
vestigated, the present work will focus on this area. 

When considering mathematical models of channels, 
the errors that emerge during transmission are usually 
thought to be independent. However, in real 
communication channels, errors due to channel 

features are not independent: in this situation, the 
channel is said to have memory. The effect of memory 
in a channel may arise for several reasons, e.g., 
multipath propagation in fading channels [4], physical 
properties of storage systems, and propagation in 
wired channels. The existence of memory in the 
channel implies “unused” capacity, which encourages 
researchers to look for new methods for decoding 
dependent errors, i.e., bursts, that represent sections in 
transmitted sequences that may contain multiple 
errors, but outside of which the errors are absent or 
unlikely. 

Although burst error correction is a well-known 
direction in coding theory, it is a much less researched 
area than independent error correction. The correction 
of error bursts requires the specific construction of 
codes (and decoding methods) aimed directly at 
correcting errors that appear in bursts. The typical 
approach to burst error correction used in modern 
communication standards is artificial channel 
decorrelation, which allows using the error-correcting 
code efficiently to correct independent errors. In many 
research papers, the estimation of decoding error 
probability is carried out by means of simulations, 
where independent errors are assumed following a 
binary symmetric channel (BSC) or channel with 
additive white Gaussian noise (AWGN). The decorrela-
tion provided by interleaving decreases the effective-
ness of the redundancy that was introduced by the 
error-correcting code. Another important issue is the 
adequateness of memoryless models to decorrelated 
channels with memory. In [5, 6] a method of decoding 
for channels with memory is described for extending 
the decoding procedure with an additional step. More 
specifically, the authors propose a channel state 
estimation step using the error grouping effect to lower 
the error probability. A comparison of random block 
permutation LDPC codes and Reed-Solomon codes in a 
Gilbert-Elliott channel is presented in [7]. In the 
present paper, we investigate the performance of the 
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LPDC codes in channels with memory based on a 
Gilbert model. The error correcting performance of 
different types of LDPC codes under conventional 
decoding with interleaving within the buffer is 
compared with decoding using knowledge about 
channel memory. The novelty of the paper is its 
investigation of decoding error probability provided by 
LDPC codes (including those from modern communica-
tion standards) in a Gilbert channel, considering both 
the known decoding methods and taking into account 
the specificity of the noise, as well as the decorrelation 
procedure for different interleaving depths, as compar-
ed to a theoretical memoryless case for infinite buffer 
size. 

 
Channels with memory 

When building both models of communication 
channels and methods of encoding and decoding the 
effect of noise on transmitted information is frequently 
represented using an additive model. The transmission 
can be expressed as y = x + e, where x is the transmitted 
symbol, y is the received symbol, and e is an error 
symbol. This formula is easily generalized to the 
vectors of length n as y = x + e, where y is a received 
vector, x is a transmitted vector, e is an error vector. 
The error vector in channel models with memory 
comprises errors that appear in bursts. 

Assuming that the channel might appear in different 
states during transmission and that the channel transi-
tions from state to state over time, such a transition can 
be characterized in a mathematical model by appropri-
ate transition probabilities.  

Consequently, the channel can be described as a 
Markov chain of states, with the distinguishing feature 
that the Markov chain is hidden. As a consequence, 
there is typically no information about the state of the 
channel on the receiving side, implying that there is no 
information about the presence in a particular state of 
the Markov model, even with a given error vector gen-
erated by this model. 

When the number of states of a communication 
channel is finite, the channel is called a channel with a 
finite number of states [8]. Such a finite-state channel 
model describes the states as binary symmetric 
channels, each having its own crossover probability. 
The model is frequently presumed to have only two 
states, namely “good” and “bad”. In a state G (good) the 
error probability is very low, while in state B (bad) the 
probability may differ depending on the channel model. 
Several derivations can be made using this model, such 
as the Gilbert model [9] (for which the error probability 
in the bad state is 0.5) and the Gilbert–Elliott model 
[10]. The Gilbert model, which is depicted in Figure 1, 
assumes that there are no errors in the “good” state, 
while errors appear with some probability in the “bad” 
state. 

The generalization of the Gilbert model presented by 
E.O. Elliott in 1963 is based on the assumption that the 
“good” state is not error-free. The Gilbert-Elliott model 
describes a discrete memory channel in which the state 
of the channel depends on the previous state. The 
channel is described by two states  = {B, G}. In a “good” 
state, the bit error probability in the channel is PG, while 
in a “bad” state PB the probability of the channel 
switching from the bad to a good state is PBG, while the 
probability of switching from good to bad is PGB. 

G B

PGB

PBG

1 - PBG1 - PGB

 
Fig. 1. Gilbert-Elliott Channel Model 

 

LDPC codes 

A binary (n, k) linear code is a k-dimensional 
subspace of an n-dimensional vector space over GF2. A 
LDPC code can be specified by a parity-check matrix H. 
If the parity-check matrix of a code is sparse, then the 
corresponding code is called a low-density parity-check 
(LDPC) code. The sparseness of H leads to more 
efficient and faster decoding because, in comparison 
with a dense matrix, there is a lower number of nodes 
to process. If the row and column weights of the parity-
check matrix are constant, then the LDPC code is said to 
be regular; otherwise, the LDPC code is said to be 
irregular. Although regular codes are easier to 
construct, irregular codes can provide superior 
performance [11]. A bipartite graph (Tanner graph) is 
commonly used to represent the parity-check matrix of 
LDPC code. This graph consists of a set of check nodes 
and variable nodes. The minimum distance of an (n, k) 
linear block code C, denoted by dmin, is defined as the 
smallest Hamming distance between two different 
codewords in C due to the linear property. Finding the 
minimal distance of the LDPC codes is an NP-hard 
problem. A probabilistic algorithm described in [12] 
can be used to discover words of small weight in a 
linear binary code. Although the work factor of the 
algorithm is asymptotically quite large, the method can 
be applied to codes of medium size. In [13], a 
randomized LDPC code technique that considers the 
properties of such codes to search for low-weight 
codewords is presented. In Table 1 the minimum 
distances for a set of LDPC codes calculated using the 
aforementioned algorithm are presented. In the table, n 
is the length of the code, k is a number of information 
bits, and z is a block size, dmin is a minimum distance, 
while bmax is a burst error correction capability. 
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TABLE 1. Code Parameters 

Code (n, k, z) dmin bmax 

PEG code (1008, 504) 12 218 

WiFi LDPC code (1296, 648, 54) 23 53 

WiMax LDPC code (1344, 672, 56) 23 55 

5G LDPC code (1105, 529, 24) 16 23 

Gilbert code (1000, 500, 250) 4 248 

RBP LDPC code (1000, 500, 50) - 49 

 
Code constructions 

In the present work, several types of LDPC codes are 
considered, including progressive-edge growth (PEG) 
codes [14], codes from communication standards [3], 
random block-permutation (RBP) codes, and Gilbert 
codes. Gilbert codes were initially proposed to correct 
error bursts. In [15], a procedure for obtaining the code 
error-burst correction capability based on the codes’ 
parameters is described. 

The most popular construction of LDPC codes to 
permit compact representation and a flexible code 
construction approach is a block-permutation construc-
tion. Quasi-cyclic low-density parity-check codes (QC-
LDPC codes), representing a special type of the block-
permutation construction, are widely used in modern 
communication standards due to their simple encoding 
implementation by means of cyclic shift registers. The 
class of QC-LDPC codes is described by its parity-check 
matrix, which consists of circulants, i.e., cyclic-
permutation matrices with a cyclic shift ik,j: 

𝐇 = [

𝐂𝐢𝟏,𝟏 𝐂𝐢𝟏,𝟐 … 𝐂𝐢𝟏,ρ

𝐂𝐢𝟐,𝟏 𝐂𝐢𝟐,𝟐 … 𝐂𝐢𝟐,ρ

… … … …
𝐂𝐢γ,𝟏 𝐂𝐢γ,𝟐 … 𝐂𝐢γ,ρ

] , 

where γ – number of matrices in a column; ρ is a num-
ber of matrices in a row; C – (z  z)-cyclic permutation 
matrix: 

𝐂 =

[
 
 
 
 
0 0 0 … 0 1
1 0 0 … 0 0
0 1 0 … 0 0
… … … … … …
0 0 0 … 1 0 ]

 
 
 
 

. 

The QC-LDPC code is said to be regular if the matrix 
solely contains cyclic-permutation matrices. However, 
if some circulants are substituted with zero matrices, 
the code is called an irregular code [16]. A special case 
of block-permutation construction is a Gilbert code 
construction, whose modifications of the burst error-
correcting capability b was analyzed in [15, 17]. A 
Gilbert code is defined by a parity-check matrix Hl: 

𝐇𝑙 = [
𝐈𝑧 𝐈𝑧 𝐈𝑧 … 𝐈𝑧
𝐈𝑧 𝐂 𝐂2 … 𝐂𝑙−1], 

where Iz ‒ (z  z)-identity matrix. 
 

Decoding of LDPC codes 

The decoding algorithms for LDPC codes are iterative 
procedures that operate on each symbol individually. 
These can be described in terms of passing messages 
over the edges of a Tanner graph between the check and 
variable nodes. The iterative nature of the algorithms 
refers to continuing decoding until the codeword has a 
zero syndrome or a predetermined number of iterations 
is reached. Since such iterative algorithms operate on 
each symbol separately, even when a large number of 
errors in the channel occurs and a wrong decision about 
the codeword is made, the bit error probability may 
remain low. The most common message passing 
algorithm with a hard decision is the bit-flipping (BF) 
algorithm, while the soft decision is the belief propaga-
tion (BP) algorithm, which is also known as a sum-
product algorithm (SPA). Although these algorithms can 
provide low error probabilities, they do not guarantee 
error correction or burst error correction within the 
code error correction capability. 

In [18], it was shown that, although BF cannot pro-
vide an acceptable error probability level in the case of 
burst error correction, it shows better results if the 
windowed BF is applied instead of the original BF. The 
BP algorithm was first presented in Gallagher’s work 
[2]. The messages passed along the edges of this algo-
rithm are probabilities or beliefs. However, working 
with log-likelihoods rather than probabilities might be 
useful for reducing decoding complexity. The channel 
log-likelihood ratios for every received value yj for Gil-
bert-Elliott channel are calculated as: 

L(yj) = 0.5(1 – 2yj)log((1 – Pe)/Pe),  

where Pe ‒ the probability that a bit error occurs in the 
channel at an arbitrarily selected moment of time: 

Pe = (PGBPB + PBGPG)/(PGB + PBG). (1) 

For channels with memory, it was proposed in [5] to 
extend the original belief propagation decoding with a 
channel state estimation step. In the conventional 
decoding algorithm, the messages are passed between 
the variable and check nodes of the LDPC Tanner graph. 
In the extended version of the algorithm, messages are 
passed between the nodes of the Tanner graph, 
between the nodes in the channel subgraph, as well as 
between these two subgraphs. 

The decoding algorithm with an estimation step 
consists of an iterative message passing between the 
channel subgraph and code subgraph. Generally 
speaking, the message passing schedule may vary; in 
this paper, the message passing is chosen to pursue the 
following schedule. In the first step, incoming channel 
messages are sent through the channel subgraph. The 
messages are passed between the states of the channel 
subgraph. Forward messages are passed from the 
initial to the final state, while backward messages are 
passed from the final state to the initial state. The 
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passing of messages represents the probabilities of the 
channel being in a specific state. Each message is a 
function of the previous message and the message 
received from the symbol node of the code graph. When 
the channel subgraph step is completed, the messages 
from the channel subgraph are passed to the code 
subgraph. Finally, conventional belief propagation 
decoding is performed. 

 
Simulation results 

In this section, the simulation results for different 
types of LDPC codes will be presented to evaluate the 
error-correcting performance using frame error rate 
(FER) criteria in the channel with memory. The goal of 
simulation is to estimate the decoding error probability 
per transmitted codeword in a Gilbert channel using 
various strategies to combat the correlated nature of 
the channel. On the one hand, the decoders which either 
use LLRs according to channel state estimation or 
providing single-burst correction, are considered. On 
the other hand, the effect of decorrelation is estimated 
for different buffer sizes and compared to theoretical 
memoryless infinite buffer case. 

The general simulation scheme is presented in 
Figure 2. The source generates the binary data stream of 
length k, which is encoded by (n, k) LDPC code, obtaining 
an encoded binary stream of length n. Then, the buffer 
stores L codewords and applies interleaving within the 
buffer. The obtained stream is passed through the 
channel. Finally, the received data is deinterleaved and 
either fed to the channel estimator and channel decoder 
or passed directly to the channel decoder. In the case 
when buffer size is set to 1, the simulation assumes no 
interleaving. Thus, the considered model may be used to 
simulate a Gilbert channel, decorrelated Gilbert channel, 
or memoryless binary symmetric channel (BSC). Gilbert 
channel with parameters PGB = 0.01 and PGB = 0.0001,  
PB = 0.5 and PG = 0, as well as the corresponding BSC 
channel with Pe, are calculated according to (1). The 
value of PBG varies: low values of PBG mean long rare 
bursts and high values mean frequent short bursts. 

Source
Channel 
encoder Buffer

Channel

Deinterleaver
Channel 
estimator

Channel 
decoder

Interleaver

Sink

Without channel 
estimation

With channel 
estimation

 
Fig. 2. Transmission Scheme 

The codes and their parameters for which the simu-
lations are obtained are presented in the Table 1. The 
decoding with interleaving is compared with decoding 
using knowledge about channel memory. The following 
scenarios are compared: 

1) Belief propagation decoding (BP) in a Gilbert 
channel; 

2) Belief propagation decoding with an additional 
channel estimation step (GE-BP) in a Gilbert channel; 

3) Belief propagation decoding with interleaving in-
side the buffer in a Gilbert channel (the interleaving is 
applied inside the buffer, where L erroneous code-
words are stored); 

4) Belief propagation decoding in BSC channel with 
corresponding error probability (BP (BSC)); 

5) Decoding using an algorithm that is able to correct 
every single burst of length less than code error correc-
tion capability bmax in a Gilbert channel. 

The simulation results for PGB = 0.01, when the 
bursts are frequent, are presented in Figure 3. From the 
figures, it may be seen that GE-BP allows achieving a 
lower error probability due to the additional channel 
estimation step. It should be noted that introducing the 
buffer and using interleaving within the buffer permits 
a trade-off between FER performance and latency. The 
bigger the buffer, the better FER performance (gets 
closer to the decoding performance in the BSC channel) 
and the greater the latency. Both BP and GE-BP present 
better FER when considering lower values of PBG, since 
the situation appears with long bursts and small gaps 
between bursts, which results in the big crossover 
probability in the corresponding BSC channel. In this 
case, decoding with interleaving performs worse than 
BP and GE-BP. The decoder that corrects every single 
burst of length less than code error correction capabil-
ity bmax demonstrates unsatisfactory error correction 
since with PGB = 0.01 and increasing PBG, the bursts are 
short and frequent which is an unpleasant scenario for 
such a decoder. 

Figure 4 present results for PGB = 0.0001, when the 
bursts become rare. For small values of PBG BP and GE-
BP, the scheme with a buffer achieves lower values of 
FER comparing to the scheme with infinite buffer. 
Except for the last decoder that corrects single bursts, 
it may be seen that the curves behave similarly to the 
previous case with frequent bursts. Since the bursts 
have a sparser nature with PGB = 0.0001, the decoder is 
able to correct a single burst within the codeword in 
contrast to the multiple bursts within the codeword 
when considering PGB = 0.01. 

From the simulation results, it can be seen that the 
range of values of the PBG parameter may be divided 
into two areas: for small PBG and high values of PBG. For 
small PBG (i.e., long error bursts), decoding considering 
the specifics of the presence of memory in the channel 
provides a gain in error probability compared to chan-
nel decorrelation. With increasing PBG (with decreasing 
length of error bursts), the channel memory appears to 
a lesser extent, especially with frequent bursts, while 
the use of decorrelation shows a significantly better 
result; however, error probabilities provided by finite 
length buffer sizes may be far from infinite case. 
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Fig. 3. FER for 5G LDPC code (a), WiFi LDPC code (b), WiMax LDPC code (c), PEG LDPC code (d), RBP LDPC code (e),  
Gilbert LDPC code (f) (PGB = 0.01) 

 



 
Proceedings of Telecom. Universities. 2022. Vol. 8. Iss. 4                          Electronics, photonics, instrumentation... 

 

 61                                              tuzs.sut.ru 

 

100

10-1

10-2

10-3

10-5
0 1 2 3 4 5 6 7

PBG

FE
R

10-4

×10-3
 

100

10-1

10-2

10-3

0 1 2 3 4 5 6 7
PBG

FE
R

10-4

×10-3
 

a) b) 

100

10-1

10-2

10-3

0 1 2 3 4 5 6 7
PBG

FE
R

×10-3
 

100

10-1

10-2

10-3

0 1 2 3 4 5 6 7
PBG

FE
R

10-4

×10-3
 

c) d) 

100

10-1

10-2

10-3

0 0,01 0,02 0,03 0,04 0,05 0,06 0,08
PBG

FE
R

10-4

0,07

 

100

10-1

10-2

10-3

0 0,05 0,1 0,15 0,25 0,3 0,35 0,5
PBG

FE
R

10-4

0,450,2 0,4

 

e) f) 

Fig. 4. FER for 5G LDPC code (a), WiFi LDPC code (b), WiMax LDPC code (c), PEG LDPC code (d), RBP LDPC code (e),  
Gilbert LDPC code (f) (PGB = 0.0001) 
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Conclusion 

The paper analyzes the decoding error correction 
performance of different types of LDPC codes in chan-
nels with memory. A conventional decoding approach 
with interleaving within the buffer is compared to 
decoding using knowledge of channel memory. The 
paper presents the estimations of the minimum 
distance and burst error correction capability of the 
considered codes. The investigated decoding error 
probability under different parameters of a channel 
with memory for various decoding scenarios 
demonstrates the existing gap between the decoding 
with interleaving and usage of channel memory. The 
specific point between the two scenarios, which 
represents the trade-off between the decoding 

performance, is determined. For PGB = 0.01, this point is 
observed at PBG = 0.07 for codes from the modern 
standards and at PBG = 0.0007 for PGB = 0.0001. 
Decoding using knowledge about channel memory 
achieves a lower decoding error probability compared 
to the decoding with interleaving for long bursts. 
However, the opposite situation, when interleaving 
produces lower error probability, is observed for short 
bursts. 

Existing decoding methods that take into account the 
channel memory do not provide a theoretically possible 
gain compared to decorrelation. Thus, increasing the 
reliability of transmission over channels with memory 
is possible both in the field of constructing new codes 
and new methods for decoding. 
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