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Introduction

Information processing and transmission technolo-
gies are a central feature of contemporary civilized life.
As such, the corruption of data as a result of the trans-
mission system'’s qualities, i.e., errors occurring during
information transmission, storage, or processing, rep-
resents a highly undesirable scenario. Coding theory in-
troduces error-correction methods by adding redun-
dancy into the data, which the receiver may then utilize
to recover the original message from the corrupted
data [1]. Such redundancy may be added using various
error-correcting codes, e.g., low-density parity-check
(LDPC) codes, which are used in many modern stand-
ards.

LDPC codes, which were invented by R. G. Gallager in
1962 [2], are used to correct errors that appear during
information transmission, storage, or processing. Due
to the complexity of encoding and decoding procedures
and computing limitations applying at that time, LDPC
codes remained largely unused for at least 30 years.
However, following their rediscovery by David MacKay
in the 1990s and coinciding with a breakthrough in
available computing power, LDPC codes became the
topic of a new wave of interest due to offering near
Shannon limit error correcting capability and the
development of effective encoding and decoding
procedures.

Over the years, use of LDPC codes in memoryless
channels piqued the interest of researchers due to their
excellent error-correcting characteristics. Further-
more, LDPC codes were chosen as an error correction
scheme in the proposed 5G communication standard
[3]. However, since the performance of LDPC codes
across channels with memory has not been properly in-
vestigated, the present work will focus on this area.

When considering mathematical models of channels,
the errors that emerge during transmission are usually
thought to be independent. However, in real
communication channels, errors due to channel

features are not independent: in this situation, the
channel is said to have memory. The effect of memory
in a channel may arise for several reasons, e.g,
multipath propagation in fading channels [4], physical
properties of storage systems, and propagation in
wired channels. The existence of memory in the
channel implies “unused” capacity, which encourages
researchers to look for new methods for decoding
dependent errors, i.e., bursts, that represent sections in
transmitted sequences that may contain multiple
errors, but outside of which the errors are absent or
unlikely.

Although burst error correction is a well-known
direction in coding theory, it is a much less researched
area than independent error correction. The correction
of error bursts requires the specific construction of
codes (and decoding methods) aimed directly at
correcting errors that appear in bursts. The typical
approach to burst error correction used in modern
communication standards is artificial channel
decorrelation, which allows using the error-correcting
code efficiently to correct independent errors. In many
research papers, the estimation of decoding error
probability is carried out by means of simulations,
where independent errors are assumed following a
binary symmetric channel (BSC) or channel with
additive white Gaussian noise (AWGN). The decorrela-
tion provided by interleaving decreases the effective-
ness of the redundancy that was introduced by the
error-correcting code. Another important issue is the
adequateness of memoryless models to decorrelated
channels with memory. In [5, 6] a method of decoding
for channels with memory is described for extending
the decoding procedure with an additional step. More
specifically, the authors propose a channel state
estimation step using the error grouping effect to lower
the error probability. A comparison of random block
permutation LDPC codes and Reed-Solomon codes in a
Gilbert-Elliott channel is presented in [7]. In the
present paper, we investigate the performance of the
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LPDC codes in channels with memory based on a
Gilbert model. The error correcting performance of
different types of LDPC codes under conventional
decoding with interleaving within the buffer is
compared with decoding using knowledge about
channel memory. The novelty of the paper is its
investigation of decoding error probability provided by
LDPC codes (including those from modern communica-
tion standards) in a Gilbert channel, considering both
the known decoding methods and taking into account
the specificity of the noise, as well as the decorrelation
procedure for different interleaving depths, as compar-
ed to a theoretical memoryless case for infinite buffer
size.

Channels with memory

When building both models of communication
channels and methods of encoding and decoding the
effect of noise on transmitted information is frequently
represented using an additive model. The transmission
can be expressed as y = x + ¢, where x is the transmitted
symbol, y is the received symbol, and e is an error
symbol. This formula is easily generalized to the
vectors of length n as y = x + e, where y is a received
vector, X is a transmitted vector, e is an error vector.
The error vector in channel models with memory
comprises errors that appear in bursts.

Assuming that the channel might appear in different
states during transmission and that the channel transi-
tions from state to state over time, such a transition can
be characterized in a mathematical model by appropri-
ate transition probabilities.

Consequently, the channel can be described as a
Markov chain of states, with the distinguishing feature
that the Markov chain is hidden. As a consequence,
there is typically no information about the state of the
channel on the receiving side, implying that there is no
information about the presence in a particular state of
the Markov model, even with a given error vector gen-
erated by this model.

When the number of states of a communication
channel is finite, the channel is called a channel with a
finite number of states [8]. Such a finite-state channel
model describes the states as binary symmetric
channels, each having its own crossover probability.
The model is frequently presumed to have only two
states, namely “good” and “bad”. In a state G (good) the
error probability is very low, while in state B (bad) the
probability may differ depending on the channel model.
Several derivations can be made using this model, such
as the Gilbert model [9] (for which the error probability
in the bad state is 0.5) and the Gilbert-Elliott model
[10]. The Gilbert model, which is depicted in Figure 1,
assumes that there are no errors in the “good” state,
while errors appear with some probability in the “bad”
state.

The generalization of the Gilbert model presented by
E.O. Elliott in 1963 is based on the assumption that the
“good” state is not error-free. The Gilbert-Elliott model
describes a discrete memory channel in which the state
of the channel depends on the previous state. The
channel is described by two states X = {B, G}. Ina “good”
state, the bit error probability in the channel is Pg, while
in a “bad” state Pp the probability of the channel
switching from the bad to a good state is Pgg, while the
probability of switching from good to bad is Pgs.

Pess
1-Pes 1-Psg
Psg
Fig. 1. Gilbert-Elliott Channel Model
LDPC codes

A binary (n, k) linear code is a k-dimensional
subspace of an n-dimensional vector space over GF2. A
LDPC code can be specified by a parity-check matrix H.
If the parity-check matrix of a code is sparse, then the
corresponding code is called a low-density parity-check
(LDPC) code. The sparseness of H leads to more
efficient and faster decoding because, in comparison
with a dense matrix, there is a lower number of nodes
to process. If the row and column weights of the parity-
check matrix are constant, then the LDPC code is said to
be regular; otherwise, the LDPC code is said to be
irregular. Although regular codes are easier to
construct, irregular codes can provide superior
performance [11]. A bipartite graph (Tanner graph) is
commonly used to represent the parity-check matrix of
LDPC code. This graph consists of a set of check nodes
and variable nodes. The minimum distance of an (n, k)
linear block code C, denoted by dmin, is defined as the
smallest Hamming distance between two different
codewords in C due to the linear property. Finding the
minimal distance of the LDPC codes is an NP-hard
problem. A probabilistic algorithm described in [12]
can be used to discover words of small weight in a
linear binary code. Although the work factor of the
algorithm is asymptotically quite large, the method can
be applied to codes of medium size. In [13], a
randomized LDPC code technique that considers the
properties of such codes to search for low-weight
codewords is presented. In Table 1 the minimum
distances for a set of LDPC codes calculated using the
aforementioned algorithm are presented. In the table, n
is the length of the code, k is a number of information
bits, and z is a block size, dmin is a minimum distance,
while bmax is a burst error correction capability.




Tpyabl y4eOHbBIX 3aBejeHnl cBaA3u. 2022, T. 8. N2 4

TABLE 1. Code Parameters

Code (n, k, z) dmin brmax
PEG code (1008, 504) 12 218
WiFi LDPC code (1296, 648, 54) 23 53
WiMax LDPC code (1344, 672, 56) 23 55
5G LDPC code (1105, 529, 24) 16 23
Gilbert code (1000, 500, 250) 4 248
RBP LDPC code (1000, 500, 50) - 49

Code constructions

In the present work, several types of LDPC codes are
considered, including progressive-edge growth (PEG)
codes [14], codes from communication standards [3],
random block-permutation (RBP) codes, and Gilbert
codes. Gilbert codes were initially proposed to correct
error bursts. In [15], a procedure for obtaining the code
error-burst correction capability based on the codes’
parameters is described.

The most popular construction of LDPC codes to
permit compact representation and a flexible code
construction approach is a block-permutation construc-
tion. Quasi-cyclic low-density parity-check codes (QC-
LDPC codes), representing a special type of the block-
permutation construction, are widely used in modern
communication standards due to their simple encoding
implementation by means of cyclic shift registers. The
class of QC-LDPC codes is described by its parity-check
matrix, which consists of circulants, ie., cyclic-
permutation matrices with a cyclic shift ix;:

Cli1  Cli2 Clip
g |C? C22 .. Ch2e
Civi  Clv2 Cive

where y - number of matrices in a column; p is a num-
ber of matrices in a row; C - (z x z)-cyclic permutation
matrix:

[0 o 0 .. 0 1]

|11 0 0 .. 0 O]
C=/0 1. 0 .. 0 O}

0O 0 0 ..1 O

The QC-LDPC code is said to be regular if the matrix
solely contains cyclic-permutation matrices. However,
if some circulants are substituted with zero matrices,
the code is called an irregular code [16]. A special case
of block-permutation construction is a Gilbert code
construction, whose modifications of the burst error-
correcting capability b was analyzed in [15, 17]. A

Gilbert code is defined by a parity-check matrix H:
L L
H=], ¢ e -y

where I, - (z x z)-identity matrix.

Decoding of LDPC codes

The decoding algorithms for LDPC codes are iterative
procedures that operate on each symbol individually.
These can be described in terms of passing messages
over the edges of a Tanner graph between the check and
variable nodes. The iterative nature of the algorithms
refers to continuing decoding until the codeword has a
zero syndrome or a predetermined number of iterations
is reached. Since such iterative algorithms operate on
each symbol separately, even when a large number of
errors in the channel occurs and a wrong decision about
the codeword is made, the bit error probability may
remain low. The most common message passing
algorithm with a hard decision is the bit-flipping (BF)
algorithm, while the soft decision is the belief propaga-
tion (BP) algorithm, which is also known as a sum-
product algorithm (SPA). Although these algorithms can
provide low error probabilities, they do not guarantee
error correction or burst error correction within the
code error correction capability.

In [18], it was shown that, although BF cannot pro-
vide an acceptable error probability level in the case of
burst error correction, it shows better results if the
windowed BF is applied instead of the original BF. The
BP algorithm was first presented in Gallagher’s work
[2]. The messages passed along the edges of this algo-
rithm are probabilities or beliefs. However, working
with log-likelihoods rather than probabilities might be
useful for reducing decoding complexity. The channel
log-likelihood ratios for every received value y; for Gil-
bert-Elliott channel are calculated as:

L(yj) = 0.5(1 - 2yj)log((1 - Pe)/Pe),

where Pe - the probability that a bit error occurs in the
channel at an arbitrarily selected moment of time:

Pe = (P6aPs + PscPc)/(Pss + Psq). (D

For channels with memory, it was proposed in [5] to
extend the original belief propagation decoding with a
channel state estimation step. In the conventional
decoding algorithm, the messages are passed between
the variable and check nodes of the LDPC Tanner graph.
In the extended version of the algorithm, messages are
passed between the nodes of the Tanner graph,
between the nodes in the channel subgraph, as well as
between these two subgraphs.

The decoding algorithm with an estimation step
consists of an iterative message passing between the
channel subgraph and code subgraph. Generally
speaking, the message passing schedule may vary; in
this paper, the message passing is chosen to pursue the
following schedule. In the first step, incoming channel
messages are sent through the channel subgraph. The
messages are passed between the states of the channel
subgraph. Forward messages are passed from the
initial to the final state, while backward messages are
passed from the final state to the initial state. The
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passing of messages represents the probabilities of the
channel being in a specific state. Each message is a
function of the previous message and the message
received from the symbol node of the code graph. When
the channel subgraph step is completed, the messages
from the channel subgraph are passed to the code
subgraph. Finally, conventional belief propagation
decoding is performed.

Simulation results

In this section, the simulation results for different
types of LDPC codes will be presented to evaluate the
error-correcting performance using frame error rate
(FER) criteria in the channel with memory. The goal of
simulation is to estimate the decoding error probability
per transmitted codeword in a Gilbert channel using
various strategies to combat the correlated nature of
the channel. On the one hand, the decoders which either
use LLRs according to channel state estimation or
providing single-burst correction, are considered. On
the other hand, the effect of decorrelation is estimated
for different buffer sizes and compared to theoretical
memoryless infinite buffer case.

The general simulation scheme is presented in
Figure 2. The source generates the binary data stream of
length k, which is encoded by (n, k) LDPC code, obtaining
an encoded binary stream of length n. Then, the buffer
stores L codewords and applies interleaving within the
buffer. The obtained stream is passed through the
channel. Finally, the received data is deinterleaved and
either fed to the channel estimator and channel decoder
or passed directly to the channel decoder. In the case
when buffer size is set to 1, the simulation assumes no
interleaving. Thus, the considered model may be used to
simulate a Gilbert channel, decorrelated Gilbert channel,
or memoryless binary symmetric channel (BSC). Gilbert
channel with parameters Pss = 0.01 and PGB = 0.0001,
Pg = 0.5 and Ps = 0, as well as the corresponding BSC
channel with Pe, are calculated according to (1). The
value of Psg varies: low values of Pp; mean long rare
bursts and high values mean frequent short bursts.

Source | ggggdngrl —» Buffer |»| Interleaver _l
With channel Channel
estimation

. Channel Channel q J
Sink |« Vatls: el celicle N Deinterleaver
0 I
Without channel
estimation

Fig. 2. Transmission Scheme

The codes and their parameters for which the simu-
lations are obtained are presented in the Table 1. The
decoding with interleaving is compared with decoding
using knowledge about channel memory. The following
scenarios are compared:

1) Belief propagation decoding (BP) in a Gilbert
channel;

2) Belief propagation decoding with an additional
channel estimation step (GE-BP) in a Gilbert channel;

3) Belief propagation decoding with interleaving in-
side the buffer in a Gilbert channel (the interleaving is
applied inside the buffer, where L erroneous code-
words are stored);

4) Belief propagation decoding in BSC channel with
corresponding error probability (BP (BSC));

5) Decoding using an algorithm that is able to correct
every single burst of length less than code error correc-
tion capability bmaxin a Gilbert channel.

The simulation results for Pgs = 0.01, when the
bursts are frequent, are presented in Figure 3. From the
figures, it may be seen that GE-BP allows achieving a
lower error probability due to the additional channel
estimation step. It should be noted that introducing the
buffer and using interleaving within the buffer permits
a trade-off between FER performance and latency. The
bigger the buffer, the better FER performance (gets
closer to the decoding performance in the BSC channel)
and the greater the latency. Both BP and GE-BP present
better FER when considering lower values of Psg, since
the situation appears with long bursts and small gaps
between bursts, which results in the big crossover
probability in the corresponding BSC channel. In this
case, decoding with interleaving performs worse than
BP and GE-BP. The decoder that corrects every single
burst of length less than code error correction capabil-
ity bmax demonstrates unsatisfactory error correction
since with Pgg = 0.01 and increasing Psg, the bursts are
short and frequent which is an unpleasant scenario for
such a decoder.

Figure 4 present results for Pes = 0.0001, when the
bursts become rare. For small values of Pgc BP and GE-
BP, the scheme with a buffer achieves lower values of
FER comparing to the scheme with infinite buffer.
Except for the last decoder that corrects single bursts,
it may be seen that the curves behave similarly to the
previous case with frequent bursts. Since the bursts
have a sparser nature with Pz = 0.0001, the decoder is
able to correct a single burst within the codeword in
contrast to the multiple bursts within the codeword
when considering Pgs = 0.01.

From the simulation results, it can be seen that the
range of values of the Ppc parameter may be divided
into two areas: for small Pss and high values of Pge. For
small Psc (i.e., long error bursts), decoding considering
the specifics of the presence of memory in the channel
provides a gain in error probability compared to chan-
nel decorrelation. With increasing Psc (with decreasing
length of error bursts), the channel memory appears to
a lesser extent, especially with frequent bursts, while
the use of decorrelation shows a significantly better
result; however, error probabilities provided by finite
length buffer sizes may be far from infinite case.
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Conclusion

The paper analyzes the decoding error correction
performance of different types of LDPC codes in chan-
nels with memory. A conventional decoding approach
with interleaving within the buffer is compared to
decoding using knowledge of channel memory. The
paper presents the estimations of the minimum
distance and burst error correction capability of the
considered codes. The investigated decoding error
probability under different parameters of a channel
with memory for various decoding scenarios
demonstrates the existing gap between the decoding
with interleaving and usage of channel memory. The

performance, is determined. For Psg = 0.01, this point is
observed at Psc = 0.07 for codes from the modern
standards and at Pgc = 0.0007 for Pesz = 0.0001.
Decoding using knowledge about channel memory
achieves a lower decoding error probability compared
to the decoding with interleaving for long bursts.
However, the opposite situation, when interleaving
produces lower error probability, is observed for short
bursts.

Existing decoding methods that take into account the
channel memory do not provide a theoretically possible
gain compared to decorrelation. Thus, increasing the
reliability of transmission over channels with memory

specific point between the two scenarios, which
represents the trade-off between the decoding

is possible both in the field of constructing new codes
and new methods for decoding.
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